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Chapter 1

Introduction

This is the final report of a study on the linear resonance of mobile gates for Venice

Inlets. It expands and replaces the interim report (No. VI)1 submitted on June 6, 2004.

The overall objective is to calculate and predict the response of gates under normally

incident waves from the Adriatic. In earlier studies the gates are assumed to span the

full width of an infinitely long channel. The natural modes of the oscillating gates can

only be excited nonlinearly through a subharmonic resonance. The real geometry of the

three inlets is however quite different, since long jetties are present only on the sea side

and the lagoon side is quite open. The inlet is better modeled by a long channel only

on the Adriatic side, and open water on the lagoon side. Because of this asymmetry,

trapping of the natural modes is no longer perfect; a window now exists for energy

exchange with the distant sea. Excitation of a nearly trapped mode by incident waves

of the same frequency is possible via a linear mechanism. The goal of the project is

to calculate the single-frequency response for a wide range of frequencies, in order to

provide the basis for predicting the mean square response to random incident waves

described by JONSWAP spectrum, for example.

In Report IV by Adamo & Mei (2003), an analytical theory is described for an

inlet with a straight barrier of 20 gates dividing the inlet channel and the open lagoon.

For analytical convenience all gates are assumed to be vertical and of rectangular cross

section. In the response/frequency diagram, all resonance peaks are quite narrow. Since

1Due to numbering errors there are no reports No. III and No. V.
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the actual gates will be inclined and of non-simple cross section, the next step is to

develop an effective numerical scheme. In this report we describe the basics of the

hybrid finite elements method (HFEM), where the far field of the gates is described by

analytical series expansions, while the near field surrounding the gates is approximated

by discrete finite elements. The principles of this hybrid analytical and discrete analysis

is reported here. For the purpose of checking the correctness and numerical accuracy of

the mixed method, the associated computer code is first modified for the simple case of

vertical gates. Sample computations of gate responses for a wide range of frequencies

are then compared with the results in Report IV based on an analytical theory. For

this reason, the hybrid element analysis is explained first for the vertical gates. Full

implementation of the hybrid method for inclined gates with the design cross sections is

finally described. The energy conservation theorem is used to check the overall accuracy.

Numerical results for a 7-gate configuration are compared with the measurements at

Voltaborrozo for a 1-to-30 model. Sample computations for Chioggia gates with 20

gates are presented. Computer programs for all four inlets with different water-level

differences and user’s manual are presented in Appendices.

In order to ensure safe and reliable operations, further research on the combined

effects of random waves and nonlinear mechanism of subharmonic resonance is needed.

Future direction are outlined in the conclusions.
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Chapter 2

Mathematical formulation

We assume the fluid to be inviscid and the flow irrotational, and the amplitudes of gates

and waves are infinitesimal, so that all boundary conditions can be linearized. The

entire fluid domain consists of two parts. One is in the rectangular channel on the sea

side (Adriatic) and the other is the open water on the lagoon side. These two parts are

separated by the gates at the junction.

For the inclined gates, it is advantageous to use the symmetry about the center axis

and study only half of the fluid domain, see Figure 2.1.

In the channel on the sea side, we have the incident (ΦI), reflected (ΦR) and radiated

wave potentials. The radiation potential on the sea side is denoted by Φ− distinguished

by the superscript −. The diffraction problem (ΦD = ΦI + ΦR) due to the incident

towards and reflected from the fixed gate in the rectangular channel is two-dimensional

since we consider only normally incident wave. The radiation problems due to the

motion of the gate elements are 3-dimensional. In the open water on the lagoon side,

there is only radiated wave denoted by Φ+.

Let us use the lower case φ to denote the spatial component of all potentials Φ, i.e.

Φ(x, y, z, t) = <
(
ϕ(x, y, z)e−iω t

)
(2.1)

The governing equations are summarized below:

(1) Diffraction Potential on the sea side : The diffraction problem is governed by

2-D Laplace equation

ϕD
xx + ϕD

zz = 0 (2.2)
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where ϕD = ϕI + ϕR, with boundary conditions

∂ϕD

∂n
= 0 (2.3)

on the wall and the bottom of the channel and fixed gates surface,

∂ϕD

∂z
− ω2

g
ϕD = 0, z = 0 (2.4)

on the free surface. In addition the Sommerfeld radiation condition must be satisfied

by the reflected wave ϕR at the far end of the channel x ∼ −∞.

(2) Radiation Potentials on two sides: For N gates across the channel, the barrier

has N degrees of freedom. As is common in floating-body dynamics, it is convenient to

decompose the radiation problems as follows:

ϕ± =
∑

α

ϑαφ±
α , (2.5)

where ϑα is the unknown angular displacement of gate α with α = 1, ..., N . Then φ±
α

represents the radiation potential due to unit-amplitude motion of gate α alone and is

governed by 3-D Laplace equation

∇2φ±
α = φ±

xx + φ±
yy + φ±

zz = 0 (2.6)
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with boundary conditions

∂φ±
α

∂n
= 0, on channel walls, coast lines and sea bed. (2.7)

Moreover, if α denotes the moving gate with all other gates fixed, then we have, on the

gate surfaces,
∂φ±

β

∂n
= 0, β 6= α (2.8)

and
∂φ±

α

∂n
= −iω{−[n3(x − X) − n1(z − Z)]}, on gate α only. (2.9)

where (X, Z) is the center of the gate rotation. In this study the axis is located at

X = 0, Z = −h. Let the profile of the gate surface be denoted by z = f(x) , then the

unit normal vector n pointing into the body is

n = (n1, n3) = (−fx, 1)[1 + (fx)
2]−1/2

On the free surface z = 0, we have

∂φ±
α

∂z
− ω2

g
φ±

α = 0 (2.10)

Finally φ±
α must satisfy the Sommerfeld radiation condition and be outgoing in the far

field.

The basic steps of the hybrid element method (Chen and Mei,1974; Yue and Mei,

1980; Mei, 1989) involve the following:

1. Divide both sides into near and far-fields. In the near field the geometry can be

complex. In the far field the depth is constant. The lateral boundaries are straight

and vertical.

2. Express the far-field potentials analytically by eigenfunction expansions with un-

known coefficients.

3. Develop variational principles to replace the partial differential equations for the

near field, subject to the requirements of continuity of pressure and flux at the

borders.

4. Discretize the near field into finite elements, with nodal unknowns.
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5. By extremization, get a matrix equation for all the unknown coefficients.

6. Solve the matrix equation, hence the radiation potentials for unit displacement.

7. Solve the dynamical equation of all gates to get the gate displacements.

8. The total potential can now be computed to get wave forces, etc.

On the channel side the geometry is best treated in Cartesian coordinates; the border

between the near and far fields is a vertical plane. On the lagoon side polar coordinates

are more appropriate; the border is a vertical surface of semi circular plan form.

In this way costly discretization is limited to the near field. We first explain the far

field solutions.
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Chapter 3

Series solutions in the far field

3.1 The diffraction problem on the sea side

For normal incidence the diffraction problem is two dimensional.

ϕD = ϕI + ϕR (3.1.1)

where

ϕI = − igA

ω

cosh k(z + h)

cosh kh
eikx (3.1.2)

is the normally incident wave. Due to the stationary presence of the stationary gates,

the total ϕR in the far field consists of outward-propagating and evanescent modes

ϕR = − igA

ω

{
a0f0(z) e−ikx +

∞∑

m=1

amfm(z)ek̄mx

}
(3.1.3)

where k0 and k̄m are the real roots of

ω2 = gk0 tanh k0h, − ω2 = gk̄m tan k̄mh, m = 1, 2, 3, ... (3.1.4)

and

f0 =

√
2 cosh k0(z + h)√

h + (g/ω2) sinh2 k0h
, fm =

√
2 cos k̄m(z + h)√

h − (g/ω2) sin2 k̄mh
(3.1.5)

are orthonormal eigenfunctions in [−h, 0]. The complex coefficients a0 and am are un-

known. Two dimensional finite-element discretization and variational principles will be

discussed later.
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3.2 The 3D normalized radiation potentials on the

sea side

On the sea side, we shall write φ− for φ−
α for brevity, and assume

φ−(x, y, z) = X(x)Y (y)Z(z) (3.2.1)

we get after substituting (3.2.1) into the Laplace equation,

X ′′

X
+

Z ′′

Z
+

Y ′′

Y
= 0 (3.2.2)

The eigen function in y is

Ym = cos
mπy

a
(3.2.3)

so that the boundary conditions on the inlet jetties

∂φ−

∂y
= 0, y = −a and a (3.2.4)

can be satisfied. Then (3.2.2) becomes

X ′′

X
+

Z ′′

Z
= −Y ′′

Y
= (

mπ

a
)2 (3.2.5)

The eigenfunction in z is

Zn = cosh [kn(z + h)] (3.2.6)
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so that the boundary condition

∂φ−

∂z
= 0 at z = −h (3.2.7)

can be satisfied. Substituting Eqn(3.2.6) into the free surface boundary condition

∂φ−

∂z
− ω2

g
φ− = 0 at z = 0 (3.2.8)

we get the dispersion relation

ω2 = gk tanh kh, (3.2.9)

There are infinitely many solutions for k. Among the discrete roots k0 is real and positive

and corresponds to propagating modes. For n = 1, 2, 3, ..., kn = ik̄n are the positive

imaginary roots, or,

kn = ik̄n, ω2 = −gk̄n tan k̄nh, n = 1, 2, 3, ... (3.2.10)

and correspond to the evanescent modes. From the Laplace equation we get

X ′′

X
=
(

mπ

a

)2

− Z ′′

Z
=
(

mπ

a

)2

− k2
n = −α2

mn (3.2.11)

It follows that the eigen function in x is of the generic form

X = e−iαmnx (3.2.12)

where

αmn =

√

k2
n −

(
mπ

a

)2

(3.2.13)

For n = 0, there can in general be M real αm0’s for m = 0, 1, 2, ...M . For m > M , we

have

α0m = iᾱ0m

so that

X = eᾱm0x

representing evanescent modes. For n > 0,

αnm = iᾱnm = i

√
k̄2

n + (
mπ

a
)2
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are all imaginary, so that

X = eᾱmnx

are evanescent modes. The radiation potential is formally,

φ− =
∞∑

m=0

∞∑

n=0

Amne−iαmnx cos
mπy

a
cosh [kn(z + h)] (3.2.14)

For vertical gates, this series solution is valid in the entire channel due to the simple

geometry. Therefore, the coefficients Amn will be determined by satisfying directly the

boundary condition at gate surface (x = 0). For inclined gates, the above solution is

only valid and useful in the far field1.

3.3 The lagoon side

On the lagoon side only the radiation potentials matter. We consider first the vertical

gates and then the inclined gates.

3.3.1 Vertical gates and local coordinates

The analysis for vertical gates is simpler since all stationary gates can be regarded as

parts of the coastline. The radiation problem for φ+
α is formally the same for all α except

for a shift of origin. It is sufficient to consider the local coordinate system where the x

axis is along the center line of the moving gate as shown in Figure 3.2. In term of the

global Cartesian coordinates (x, y), the local polar coordinates are:

rα =
√

x2 + (y − Yα)2, tan θα =
y − Y α

x
(3.3.1)

and (0, Yα) refers to the center of gate α. In this section the subscript α will be suppressed

for brevity.

After separating the time factor e−iωt from Φ+ = Re {φ+e−iωt}, the radiation poten-

tial on the lagoon side φ+ satisfies the Laplace equation in local polar coordinates

1

r

∂

∂r

(
r
∂φ+

∂r

)
+

1

r2

∂2φ+

∂θ2
+

∂2φ+

∂z2
= 0 (3.3.2)

1Later in the numerical method we shall take advantage of the symmetry with respect to the cen-

terline (x axis) and only use half of the channel in 0 < y < a. The same solution is still valid in the far

field.
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Separation of variables gives

φ+(r, θ, z) = R(r)Θ(θ)Z(z) (3.3.3)

Upon substituting (3.3.3) into (3.3.2), we get

R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ
+

Z ′′

Z
= 0 (3.3.4)

The eigen function in z is

Zn = cosh [kn(z + h)] (3.3.5)

subject to the dispersion relation

ω2 = kng tanh knh, n = 0, 1, 2, 3, . (3.3.6)

with k0 = real, kn = ik̄n, with k̄n = real. Symmetry of our problem requires no velocity

across the center plane, i.e.

uθ =
∂φ+

∂θ
= 0 at θ = 0

Furthermore, no flux along the banks θ = ±π
2

requires

∂φ+

∂θ
= 0 at θ = ±π

2
(3.3.7)
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These boundary conditions lead to the eigen functions in θ,

Θm = cos 2mθ, m = 1, 2, 3, ..., · · · (3.3.8)

From (3.3.4) the radial eigenfunction is governed by Bessel’s equation

r2R′′ + rR′ + (k2
nr2 − (2m)2)R = 0 (3.3.9)

For n = 0, the general solution is

Rm0(r) = Bm0H
(1)
2m(k0r) + B′

m0H
(2)
2m(k0r) (3.3.10)

where H
(1)
2m, H

(2)
2m are the Hankel functions of the first and second kind. As the argument

|x| → ∞, they behave asymptotically as

H
(1)
2m(x) ∼

√
2

πx
ei(x−mπ−π

4
); H

(2)
2m(x) ∼

√
2

πx
e−i(x− mπ−π

4
)

Imposing the radiation condition, only outgoing waves are permitted at r → ∞. Only

H
(1)
2m(k0r) can be kept.

For imaginary roots, kn = ik̄n, n = 1, 2, 3..., Eqn (3.3.9) can be written as

r2R′′ + rR′ −
[
k̄2

nr2 + (2m)2
]
R = 0 (3.3.11)

The general solution is

Rmn(r) = BmnI2m(k̄nr) + B′
mnK2m(k̄nr) (3.3.12)

where I2m, K2m are the modified Hankel function of the first and second kind. As the

argument x → ∞,

I2m(x) → ∞; K2m(x) → 0

Boundedness at r → ∞ excludes I2m from our solution. The admissible eigenfunctions

are proportional to

K2m(k̄nr) =
π

2
i2m+1H

(1)
2m(ik̄nr)

Finally the potential in the far field on the sea side can be written as,

φ+ =
∞∑

m=0

∞∑

n=0

Bmn cos 2mθ cosh [kn(z + h)] H
(1)
2m(knr) (3.3.13)
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We emphasize that the above results are to be interpreted finally in terms of the

global coordinates, i.e., we must replace for each potential φ+
α :

r → rα =
√

x2 + (y − Yα)2, θ → θα (3.3.14)

where

tan θα =
y − Y α

x
(3.3.15)

and (0, Yα) refers to the center of gate α. Thus,

φ+
α =

∞∑

m=0

∞∑

n=0

B(α)
mn cos 2mθα cosh [kn(z + h)] H

(1)
2m(knrα) (3.3.16)

3.3.2 Inclined gates and global coordinates

For inclined gates, we cannot use the local coordinates and must use the global coordi-

nates where the origin is at the center of the vertical plane flush with the junction line

(the lagoon coast). The far field solution for α is therefore given by

φ+
α =

∞∑

m=0

∞∑

n=0

B(α)
mn cos 2mθ cosh [kn(z + h)] H

(1)
2m(knr) (3.3.17)

For computational economy in the later method of HFEM, we shall use half of the

fluid domain as shown in Figure 3.3. Eq. (3.3.17) of course still applies.

In the Hybrid Finite Element Method (HFEM), the coefficients B(α)
mn will be deter-

mined by matching with the near field solution, where discrete finite elements cover all of

the inclined gates. For large order but finite argument, Hankel functions of the first kind

become very large. For example, H
(1)
20 (0.3) = 9.7978 × 1015 − 1.1658 × 1033i. To avoid

numerical difficulty we shall use H
(1)
2m(knrC) to normalize the Hankel eigenfunctions in

r, where rC is the radius of the semi circle separating the near and far fields. Similarly

we use cosh(knh) to normalize the eigenfunctions in z. Introducing new coefficient ν(α)
mn,

we can rewrite (3.3.17) as

φ+
α =

∞∑

m=0

∞∑

n=0

ν(α)
mn cos 2mθ

cosh [kn(z + h)]

cosh(knh)

H
(1)
2m(knr)

H
(1)
2m(knrC)

(3.3.18)

with

B(α)
mn =

ν(α)
mn

cosh(knh)H
(1)
2m(knrC)
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Chapter 4

Hybrid Finite Element Method

4.1 Variational principles and HFEM

We shall first derive the variational principle for our Hybrid Finite Element Method

(HFEM) from the governing equations for a radiation problem. To facilitate under-

standing of the mathematics we shall also reverse the reasoning and start from the

variational principle then prove its equivalence to the boundary value problem. Since

the mathematical procedure is the same for the sea side and the lagoon side, we use a

generic φ without superscripts to represent either φ− or φ+ in this section.

4.1.1 From BVP to Variational principle

We shall employ Galerkin’s method to derive the variational principle directly from the

boundary value problem. Let us first divide the fluid domain into the near and far fields,

V and Ṽ , separated by a vertical surface C. The corresponding potentials are φ and

φ̃ respectively. These potentials must satisfy Laplace equation and all the boundary

conditions in their own domains; they and their normal derivatives must be continuous

across C. The far-field potential φ̃ must also obey the radiation condition at infinity.

According to Galerkin’s method, we require that for any approximate solutions φ ∈ V

and φ̃ ∈ Ṽ ,

∫

V
∇2φ δφdV =

∫

SF

(
∂φ

∂n
− ω2

g
φ

)
δφdS +

∫

SB

(
∂φ

∂n
− Un

)
δφdS +

20



+
∫

C

(
∂φ

∂n
− ∂φ̃

∂n

)
δφdS (4.1.1)

for any weight functions δφ and φ̃, which vary within the same solution space as φ and

φ̃. SB and SF are the parts of the barrier and free surface inside V .

On the left-hand side, integrating by part gives

∫

V
∇2φδφdV =

∫

V

[
∇ · (δφ∇φ) −

∫

V
∇φ · ∇δφ

]
dV

=
∫

S
(δφ∇φ) · ~ndS −

∫

V

1

2
δ(∇φ)2dV

=
∫

SB+SF +B+C
δφ

∂φ

∂n
dS − δ

∫

V

1

2
(∇φ)2dV

where use is made of Gauss’ divergence theorem. With this result (4.1.1) can be rewritten

as

−δ
∫

V

1

2
(∇φ)2dV = −δ

∫

SF

ω2

2g
φ2dS − δ

∫

SB

UnφdS −
∫

C

∂φ̃

∂n
δφdS (4.1.2)

We shall now rewrite the last term in the form of a first variation

δ
∫

(.)

Note first that

−
∫

C

∂φ̃

∂n
δφdS = −δ

∫

C

∂φ̃

∂n
φdS +

∫

C

∂δφ̃

∂n
φdS (4.1.3)

To proceed further we add two integrals which are zero in view of the continuity condi-

tions and the radiation condition at infinity,

−
∫

C

∂φ̃

∂n
δφdS = −δ

∫

C

∂φ̃

∂n
φdS +

∫

C

∂δφ̃

∂n
φdS

+
∫

C
(φ̃ − φ)

∂δφ̃

∂n
dS +

1

2

∫

C

(
δφ̃

∂φ̃

∂n
− φ̃

∂δφ̃

∂n

)
dS (4.1.4)

In particular the first added integral vanishes because of continuity of pressure. To show

that the second vanishes we use the fact that both φ̃ and δφ̃ satisfy Laplace’s equation

and the same boundary conditions. By Green’s formula,

1

2

∫

C

(
δφ̃

∂φ̃

∂n
− φ̃

∂δφ̃

∂n

)
dS +

1

2

∫

C∞

(
δφ̃

∂φ̃

∂n
− φ̃

∂δφ̃

∂n

)
dS = 0

The integral along C∞ vanishes by virtue of the radiation condition, hence the integral

along C also vanishes.
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After some cancelations and combinations, the preceding equation (4.1.4) becomes

−δ
∫

C

∂φ̃

∂n
φdS +

1

2

∫

C

(
δφ̃

∂φ̃

∂n
+ φ̃

∂δφ̃

∂n

)
dS = −δ

∫

C

∂φ̃

∂n
φdS +

1

2
δ
∫

C
φ̃

∂φ̃

∂n
dS

= δ
∫

C

(
1

2
φ̃ − φ

)
∂φ̃

∂n
dS (4.1.5)

Finally by using (4.1.3) (4.1.4)(4.1.5) in (4.1.2) we rewrite the Galerkin formula as

a variational principle

δF(φ, φ̃) = 0, (4.1.6)

where

F(φ, φ̃) =
∫

V

1

2
(∇φ)2dV −

∫

SF

ω2

2g
φ2dS −

∫

SB

UnφdS +
∫

C

(
φ̃

2
− φ

)
∂φ̃

∂n
dS (4.1.7)

4.1.2 From variational principle to BVP

Alternatively, it can be proven that the boundary-value problem defined by (Eqs. (2.6)

to (2.10) is the result of the stationarity of the functional defined in (4.1.7).

The first variation of (4.1.7) is

δF =
∫

V
∇φ·∇δφdV−

∫

SF

ω2

g
φδφdS−

∫

SB

UnδφdS+
∫

C

[(
δφ̃

2
− δφ

)
∂φ̃

∂n
+

(
φ̃

2
− φ

)
∂δφ̃

∂n

]
dS

Integrating by parts, the first term on the right-hand side gives

∫

V
∇φ · ∇δφdV =

∫

V

[
∇ · (δφ∇φ) − δφ∇2φ

]
dV

=
∫

S
(δφ∇φ) · ~ndS −

∫

V
δφ∇2φdV

=
∫

SB+SF +B+C
δφ

∂φ

∂n
dS −

∫

V
δφ∇2φdV

where Gauss’ divergence theorem is used. Collecting the terms according to the inte-

gration domains, we get

δF = −
∫

V
∇2φδφdV +

∫

SF

(
∂φ

∂n
− ω2

g
φ

)
δφdS

+
∫

SB

(
∂φ

∂n
− Un

)
δφdS +

∫

B
δφ

∂φ

∂n
dS

+
∫

C

[
δφ

∂φ

∂n
+ (

δφ̃

2
− δφ)

∂φ̃

∂n
+ (

φ̃

2
− φ)

∂δφ̃

∂n

]
dS
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After some rearrangement, the last integral can be written as

∫

C

(
∂φ

∂n
− ∂φ̃

∂n

)
δφdS +

∫

C

(
φ − φ̃

) ∂δφ̃

∂n
dS +

1

2

∫

C

(
δφ̃

∂φ̃

∂n
− φ̃

∂δφ̃

∂n

)
dS

Since φ̃ and δφ̃ are harmonic in the outer region, we can replace the integral domain C

with C∞ + SW + SF + B by Green’s theorem. Finally this integral goes to zero due to

the radiation condition at infinity and boundary conditions on the wall SW (∂φ̃
∂n

= 0),

the bottom B (∂φ̃
∂n

= 0) and the free surface SF (∂φ̃
∂n

= ω2

g
φ̃). Thus the solution to the

boundary value problem is equivalent to the stationary of the functional (4.1.7).

4.1.3 The procedure of Hybrid Finite Element Method (HFEM)

When trial functions are introduced to approximate the exact solution, unknown coef-

ficients appear in the functional. Application of Rayleigh-Ritz procedure to minimize

the functional leads to algebraic equations for these unknown coefficients, which will be

solved numerically. For convenience, we first label various integrals in (4.1.7) as follows

F =

I1︷ ︸︸ ︷∫

V

1

2
(∇φ)2dV +

I2︷ ︸︸ ︷∫

SF

−ω2

2g
φ2dS +

I3︷ ︸︸ ︷
∫

C

φ̃

2

∂φ̃

∂n
dS +

I4︷ ︸︸ ︷
∫

C
−φ

∂φ̃

∂n
dS +

I5︷ ︸︸ ︷∫

SB

−UnφdS (4.1.8)

Un is the normal velocity of the gate for unit amplitude of angular displacement. The

scheme of HFEM is as follows:

1. Discretize the near field of the gate with finite elements. Introduce an interpolation

function for each element to approximate the exact solution φ, with unknown nodal

potentials φ̂.

2. Represent the far-field φ̃ by eigenfunction expansions and treat series coefficients

ν̂ as unknowns.

3. Combine the solutions from (1) and (2) into Eq.(4.1.7) and evaluate the integrals.

4. Extremize the functional and get algebraic equations for φ̂, ν̂. Solve the algebraic

equations.
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Figure 4.1: 20-node isoparametric cube element

In principle the imaginary boundary C can be chosen arbitrarily as long as it encloses

the complex geometry. We naturally choose a l semicircle (refer to Figure 3.3.1) for

convenience.

The theory described so far applies equally for both two and three dimensional

problems.

4.2 3-D FEM discretization

4.2.1 General cubic element

For 3-D problems, we employ 20-node isoparametric cube elements as shown in Figure

4.1. For each element, the global coordinates (x, y, z) are related to local coordinates

(ξ, η, ζ) by the interpolation functions hi(ξ, η, ζ) in the following way:

x =
20∑

i=1

hi(ξ, η, ζ)xi ; y =
20∑

i=1

hi(ξ, η, ζ)yi ; z =
20∑

i=1

hi(ξ, η, ζ)zi (4.2.9)

where (xi, yi, zi) are the global coordinates of the nodes and the interpolation functions

are defined as follows (refer to Figure 4.1):

hi =
1

8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ)(ξiξ + ηiη + ζiζ − 2), i = 1 ∼ 8;

hi =
1

4
(1 − ξ2)(1 + ηiη)(1 + ζiζ), i = 9 ∼ 12;
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hi =
1

4
(1 − η2)(1 + ξiξ)(1 + ζiζ), i = 13 ∼ 16;

hi =
1

4
(1 − ζ2)(1 + ξiξ)(1 + ηiη), i = 17 ∼ 20;

with

ξi, ηi, ζi = ±1

Similarly, the potential within the element is related to the nodal potential φi in the

same way:

φ(x(ξ,η,ζ), y(ξ,η,ζ), z(ξ,η,ζ)) =
20∑

i=1

hi(ξ, η, ζ)φi

In matrix form,

φ =
[

h1 h2 · · · h20

]




φ1

φ2

...

φ20




= Hφ̂ (4.2.10)

(∇φ)2 = (
∂φ

∂x
)2 + (

∂φ

∂y
)2 + (

∂φ

∂z
)2 =

[
∂φ
∂x

∂φ
∂y

∂φ
∂z

]



∂φ
∂x

∂φ
∂y

∂φ
∂z




(4.2.11)

By chain rule, 


∂
∂ξ

∂
∂η

∂
∂ζ




=




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ







∂
∂x

∂
∂y

∂
∂z




= J




∂
∂x

∂
∂y

∂
∂z




For a proper isoparametric element, the Jacobian determinant of the transformation

does not vanish

det(J) =

∣∣∣∣∣∣∣∣∣∣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∣∣∣∣∣∣∣∣∣∣

6= 0

and its inverse J−1 exists. Therefore



∂φ
∂x

∂φ
∂y

∂φ
∂z




= J−1




∂φ
∂ξ

∂φ
∂η

∂φ
∂ζ




= J−1




H,ξ

H,η

H,ζ




φ̂ = Bφ̂
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where use is made of (4.2.10) and “,ξ ” denotes “ ∂
∂ξ

” and so on. The B matrix is defined

as

B = J−1




h1,ξ h2,ξ · · · h20,ξ

h1,η h2,η · · · h20,η

h1,ζ h2,ζ · · · h20,ζ




where

hi,ξ =
1

8
ξi(2ξiξ + ηiη + ζiζ − 1)(1 + ηiη)(1 + ζiζ), i = 1 ∼ 8;

hi,ξ = −1

2
ξ(1 + ηiη)(1 + ζiζ), i = 9 ∼ 12;

hi,ξ =
1

4
ξi(1 − η2)(1 + ζiζ), i = 13 ∼ 16;

hi,ξ =
1

4
ξi(1 − ζ2)(1 + ηiη), i = 17 ∼ 20;

hi,η =
1

8
ηi(2ηiη + ξiξ + ζiζ − 1)(1 + ξiξ)(1 + ζiζ), i = 1 ∼ 8;

hi,η =
1

4
ηi(1 − ξ2)(1 + ζiζ), i = 9 ∼ 12;

hi,η = −1

2
η(1 + ξiξ)(1 + ζiζ), i = 13 ∼ 16;

hi,η =
1

4
ηi(1 − ζ2)(1 + ξiξ), i = 17 ∼ 20;

hi,ζ =
1

8
ζi(2ζiζ + ξiξ + ηiη − 1)(1 + ξiξ)(1 + ηiη), i = 1 ∼ 8;

hi,ζ =
1

4
ζi(1 − ξ2)(1 + ηiη), i = 9 ∼ 12;

hi,ζ =
1

4
ζi(1 − η2)(1 + ξiξ), i = 13 ∼ 16;

hi,ζ = −1

2
ζ(1 + ξiξ)(1 + ηiη), i = 17 ∼ 20;

with

ξi, ηi, ζi = ±1

The Jacobi for each element can be obtained by making use of (4.2.9)

J =




h1,ξ h2,ξ · · · h20,ξ

h1,η h2,η · · · h20,η

h1,ζ h2,ζ · · · h20,ζ







x1 y1 z1

x2 y2 z2

...
...

...

x20 y20 z20
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Figure 4.2: Degenerate prism element

4.2.2 Degenerate prism element

For better fit to the inclined gate surface, we use another kind of 3-D element, degenerate

prism element, as shown in Figure 4.2. Later on we will see that just one layer of this

kind of elements on the inclined surface is needed between the general cubic elements in

the interior and the gate surface. For prism elements, we simply let the local nodes 5,

9 and 1 overlap each other, i.e., local nodes 5, 9 and 1 has the same global coordinates.

This also happens on nodes 7, 11 and 3, as well as nodes 15 and 13. In this way we can

just treat prisms as the general cube elements; all the formula in the last section still

hold. No extra work is needed.

4.3 Evaluation of integrals in the functional

With these preparations, we now evaluate each integral in the functional 4.1.8 explicitly.

All the coordinates are local. Again the subscripts α are omitted for brevity.

4.3.1 Integrals on the lagoon side

For vertical gates, we use local polar coordinates with the origin at the center of the

gate α. imaginary boundary C is chosen to be r = rC = B
2

also centered at the origin
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(Figure 3.2). Thus

∂φ̃+

∂n
=

∂φ̃+

∂r
=

M∑

m=0

N∑

n=0

νmn cos 2mθ
cosh [kn(z + h)]

cosh(knh)

H
(1)′

2m (knr)

H
(1)
2m(knrC)

kn

The integral on C can be easily evaluated in the cylindrical coordinate system. They

are given as follows.

1) I1

For an element V el,

∫

V el
(∇φ+)2dV el =

{
φ̂+
}T
∫

V el
BTBdV el

{
φ̂+
}

=
{
φ̂+
}T

[K1]
el
{
φ̂+
}

where [K1]
el is element stiffness matrix. For evaluating [K1]

el we turn to the isopara-

metric element from the physical element

∫

V el
BTBdV el =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTBdet(J)dξdηdζ

Then the standard Gaussian integration is applied.

After assemblage and redefining
{
φ̂+
}

as the global nodal potential vector, we get

I1 =
1

2

{
φ̂+
}T

[K1]
{
φ̂+
}∗

2) I2

For an element with one face on the free surface, say ζ = 1,

∫

Sel
F

−ω2

g
φ+2

dSel
F =

{
φ̂+
}T
∫ +1

−1

∫ +1

−1
−ω2

g

[
HTHdet(J)

]
ζ=1

dξdη
{
φ̂+
}

where [K2]
el is element stiffness matrix. For the surface integral, our 20-node isoparamet-

ric cubic elements will degenerate to 8-node isoparametric plane elements. In general,

the Jacobian of transformation for 3D global face (x, y, z) to 2D local face (ξ, η) is

det(J) =

∣∣∣∣∣∣
∂ ~X(x, y, z)

∂ξ
× ∂ ~X(x, y, z)

∂η

∣∣∣∣∣∣

=



(

∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

)2

+

(
∂y

∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η

)2

+

(
∂z

∂ξ

∂x

∂η
− ∂x

∂ξ

∂z

∂η

)2



1
2

(4.3.12)

The interpolation functions for the 2D element in Figure 4.3.1 are defined as follows:

hi =
1

4
(1 + ξiξ)(1 + ηiη)(ξiξ + ηiη − 1), i = 1, 3, 5, 7;
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Figure 4.3: 8-node isoparametric plane element

hi =
1

2
(1 − ξ2)(1 + ηiη), i = 2, 6;

hi =
1

2
(1 − η2)(1 + ξiξ), i = 4, 8;

where

ξi, ηi = ±1

Therefore,

hi,ξ =
1

4
ξi(1 + ηiη)(2ξiξ + ηiη), i = 1, 3, 5, 7;

hi,ξ = ξ(1 + ηiη), i = 2, 6;

hi,ξ =
1

2
ξi(1 − η2), i = 4, 8;

and

hi,η =
1

4
ηi(1 + ξiξ)(2ηiη + ξiξ), i = 1, 3, 5, 7;

hi,η =
1

2
ηi(1 − ξ2), i = 2, 6;

hi,η = η(1 + ξiξ), i = 4, 8;

After assemblage and using the global φ̂, we get

I2 =
1

2

{
φ̂+
}T

[K2]
{
φ̂+
}

3) I3
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∫

C
φ̃+

∂φ̃+

∂n
dS =

∫ 0

−h
dz
∫ π

2

−π
2

rCdθ





M∑

p=0

N∑

q=0

νpq cos 2pθ
cosh [kq(z + h)]

cosh(kqh)

H
(1)
2p (kqrC)

H
(1)
2p (kqrC)









M∑

m=0

N∑

n=0

νmn cos 2mθ
cosh [kn(z + h)]

cosh(knh)

H
(1)′

2m (knrC)

H
(1)
2m(knrC)

kn





=
M∑

p=0

N∑

q=0

M∑

m=0

N∑

n=0

rCknνpqνmn

cosh(kqh) cosh(knh)

H
(1)′

2m (knrC)

H
(1)
2m(knrC)

∫ π
2

−π
2

cos 2pθ cos 2mθdθ
∫ 0

−h
cosh [kq(z + h)] cosh [kn(z + h)] dz

=
M∑

m=0

N∑

n=0

ν2
mn

πrCknCn

εm cosh2(knh)

H
(1)′

2m (knrC)

H
(1)
2m(knrC)

where εm is the Jacobi symbol,

ε0 = 1, εm = 2, m = 1, 2, 3, . . . (4.3.13)

and Cn is defined by

Cn =
∫ 0

−h
cosh[kn(z + h)] cosh[kn(z + h)]dz =

1

2kn
(qn +

1

2
sinh 2qn) (4.3.14)

and qn = knh. Use has been made of the orthogonality of the eigen functions. Derivatives

of Hankel function are calculated by

H ′
ν =

1

2
(Hν−1 − Hν+1)

If we define an unknown column coefficient vector

{ν̂} =
[

ν00 ν10 · · · νM0
... ν01 ν11 · · · νM1

... · · · ... ν0N ν1N · · · νMN

]T

(M+1)×(N+1)

then the integral can be written in matrix form

∫

C
φ̃+

∂φ̃+

∂n
dS = {ν̂}T [K3] {ν̂}

where K3 is a diagonal and

[K3]j,j =
πrCknCn

εm cosh2(knh)

H
(1)′

2m (knrC)

H
(1)
2m(knrC)

where

j = (M + 1) × n + m + 1
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Therefore

I3 =
1

2
{µ̂}T [K3] {µ̂}

4) I4

With one face of the element on C, say η = 1,

∫

Cel
φ+∂φ̃+

∂n
dCel =

∫ +1

−1

∫ +1

−1

[
Hφ̂Mµ̂det(J)

]
η=1

dξdζ

=
{
φ̂+
}T
∫ +1

−1

∫ +1

−1

[
HTMdet(J)

]
η=1

dξdζ {ν̂}

=
{
φ̂
}T

[K4]
el {ν̂}

where [K4]
el is element stiffness matrix and M is a row vector with

M(M+1)×n+m+1 = cos
[
2m cos−1

(
x

rC

)]
cosh [kn(z + h)]

cosh(knh)

H
(1)′

2m (knrC)

H
(1)
2m(knrC)

kn

Keep it in mind that the whole integrand will be evaluated at η = 1. The x and z are

about to be replaced by (ξ, η, ζ) through (4.2.9) and det(J) is obtained from (4.3.12) by

replacing η with ζ. Therefore

I4 = −
{
φ̂+
}T

[K4] {ν̂}

5) I5

For an element with one face at gate, say ξ = 1,

∫

Sel
B

UnφdSel
B =

∫ +1

−1

∫ +1

−1
[UnHdet(J)]ξ=1 dηdζ

{
φ̂+
}

= [K5]
el
{
φ̂+
}

(4.3.15)

where Un is to be defined later. [K5]
el is element stiffness matrix. After assemblage we

get

I5 = − [K5]
{
φ̂+
}

4.3.2 Integrals on the sea side – the 3-D radiation problem

We now switch to the global coordinates and use (3.2.14) as the outer solution, which

can be rewritten as

φ̃− =
∞∑

m=0

∞∑

n=0

µmne−iαmnx cos
mπy

a

cosh [kn(z + h)]

cosh knh
(4.3.16)
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with

Amn =
µmn

cosh(knh)

It is natural to choose a vertical rectangle C as the imaginary boundary (see Figure

4.3.2). Note that x = xC on this boundary and the normal is in the negative direction

of the x axis. Therefore we have

∂φ̃−

∂n
= −∂φ̃−

∂x
=

M∑

m=0

N∑

n=0

µmne−iαmnx cos
mπy

a

cosh [kn(z + h)]

cosh knh
iαmn

The integrals of I1 and I2 in (4.1.8) take the same form as those on the lagoon side. We

need however to calculate I3, I4 and I5.

1) I3

∫

C
φ̃−∂φ̃−

∂n
dS =

∫ 0

−h
dz
∫ a

0
dy





M∑

p=0

N∑

q=0

µpqe
−iαpqxC cos

pπy

a

cosh [kq(z + h)]

cosh kqh





{
M∑

m=0

N∑

n=0

µmne−iαmnxC cos
mπy

a

cosh [kn(z + h)]

cosh knh
iαmn

}

=
M∑

p=0

N∑

q=0

M∑

m=0

N∑

n=0

iαmnµpqµmne−iαpqxCe−iαmnxC

cosh(kqh) cosh(knh)
∫ a

0
cos

pπy

a
cos

mπy

a
dy
∫ 0

−h
cosh [kq(z + h)] cosh [kn(z + h)] dz

=
M∑

m=0

N∑

n=0

µ2
mn

iαmne−2iαmnxC

cosh2(knh)

a

εm
Cn
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where εm and Cn are defined in (4.3.13) and (4.3.14). Use has been made of the orthog-

onality of the eigen functions. Let us define an unknown column coefficient vector

{µ̂} =
[

µ00 µ10 · · · µM0
... µ01 µ11 · · · µM1

... · · · ... µ0N µ1N · · · µMN

]T

(M+1)×(N+1)

then the integral can be written in matrix form

∫

C
φ̃−∂φ̃−

∂n
dS = {µ̂}T [K3] {µ̂}

where K3 is diagonal

[K3]j,j =
iαmne−2iαmnxC

cosh2(knh)

a

εm

Cn

with

j = (M + 1) × n + m + 1

Therefore

I3 =
1

2
{µ̂}T [K3] {µ̂}

2) I4

With one face of the element on C, say η = 1,

∫

Cel
φ−∂φ̃−

∂n
dCel =

∫ +1

−1

∫ +1

−1

[
Hφ̂Mµ̂det(J)

]
η=1

dξdζ

=
{
φ̂−
}T
∫ +1

−1

∫ +1

−1

[
HTMdet(J)

]
η=1

dξdζ {µ̂}

=
{
φ̂−
}T

[K4]
el {µ̂}

where [K4]
el is element stiffness matrix and M is a row vector with

M(M+1)×n+m+1 = e−iαmnxC cos
mπy

a

cosh [kn(z + h)]

cosh knh
iαmn

The integrand is evaluated on η = 1. We switch from the global coordinates x and

z to local coordinates (ξ, η, ζ) through the relation (4.2.9). The determinant det(J) is

obtained from (4.3.12) by replacing η with ζ. Therefore

I4 = −
{
φ̂−
}T

[K4] {µ̂}

3) I5
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For an element with one face at gate, say ξ = 1,

∫

Sel
B

UnφdSel
B =

∫ +1

−1

∫ +1

−1
[UnHdet(J)]ξ=1 dηdζ

{
φ̂−
}

= [K5]
el
{
φ̂−
}

where Un is to be defined later. [K5]
el is element stiffness matrix. After assemblage we

get

I5 = − [K5]
{
φ̂−
}

4.3.3 Minimization and solving linear system equations

On either side of the barrier, the functional is of the same form. For the sea side it reads

F(φ̂−, µ̂) =
1

2

{
φ̂−
}T

[K1]
{
φ̂−
}

+
1

2

{
φ̂−
}T

[K2]
{
φ̂−
}

+
1

2
µ̂T [K3] {µ̂}

−
{
φ̂−
}T

[K4] {µ̂} − [K5]
{
φ̂−
}

(4.3.17)

For the lagoon side, the stationary functional is

F(φ̂+, ν̂) =
1

2

{
φ̂+
}T

[K1]
{
φ̂+
}

+
1

2

{
φ̂+
}T

[K2]
{
φ̂+
}

+
1

2
ν̂T [K3] {ν̂}

−
{
φ̂+
}T

[K4] {ν̂} − [K5]
{
φ̂+
}

(4.3.18)

We take the generic form and equate to zero the first derivative with respect to

unknowns φi and µi (or νi), and get,

[K1]
{
φ̂
}

+ [K2]
{
φ̂
}
− [K4] {µ̂} = [K5]

T (4.3.19)

[K3] {µ̂} − [K4]
T
{
φ̂
}

= 0 (4.3.20)

From here on, we have two ways to solve the linear system of equations:

1. Method 1:

Equation (4.4.40) gives

{µ̂} = [K3]
−1 [K4]

T
{
φ̂
}

(4.3.21)

Substituting it into (4.4.39), we get

{
[K1] + [K2] − [K4] [K3]

−1 [K4]
T
} {

φ̂
}

= [K5]
T

and
{
φ̂
}

is obtained. Substituting
{
φ̂
}

back into (4.4.41) to get {µ̂}.
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Figure 4.5: The linear system of equations after assemblage

2. Method 2:

Assemble all the matrix on the LHS into one matrix as well as the RHS. See Figure

4.5 for detail. Then we can solve the new linear system equations to get both
{
φ̂
}

and {µ̂} (or {ν̂}) simultaneously.

Then the velocity potential is known in both the finite element domain and the super

element, i.e., the fluid region outside the imaginary boundary C. As the computation

scale increases, we try to take the advantage of sparse matrix and use the external linear

system equations solver to save memory and CPU time. The second method is adopted

so that we need solve the equations only once, instead of manipulations of several matrix

as in the first method.

4.4 2-D diffraction on the sea side

In the diffraction problem, the gates are stationary (see Figure 4.6). For normally

incident, long-crested waves, the dynamics of water is two dimensional. For vertical

gates the reflected wave is trivial; for inclined gates the reflected waves must be found

numerically. Details are given here for the sake of completeness.
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4.4.1 Variational principle

We let the known incident wave ΦI be

ΦI = ϕIe−iωt =
−igA

ω

cosh [k0(z + h)]

cosh(k0h)
eik0xe−iωt (4.4.22)

where A is the incident wave amplitude, and the unknown reflected wave potential in

the near field be

ΦR = ϕRe−iωt (4.4.23)

The total diffraction potential ϕD(x, z) = ϕI + ϕR satisfies the conditions (2.2 ∼ 2.4).

The reflected wave must satisfy the radiation condition. Similar to §3.1.2, it can be

proven that diffraction boundary-value problem is equivalent to the stationarity of the

following functional

F(ϕD, ϕ̃R) =
∫

V

1

2
(∇ϕD)2dV −

∫

SF

ω2

2g

(
ϕD
)2

dS +
∫

C
[(

ϕ̃R

2
− ϕR)

∂ϕ̃

∂n
− ϕ̃R

2

∂ϕI

∂n
]dS

(4.4.24)

where ϕ = ϕR+ϕI is the total potential within the finite element domain and ϕ̃ = ϕ̃R+ϕI

is the total potential of the outer domain; ϕ̃R is the reduced 2D solution from the eigen

function expansion (3.2.14), i.e.

ϕ̃R =
∞∑

n=0

µne−iknx cosh [kn(z + h)]

cosh knh
(4.4.25)

where k0 is the real root and kn
′s with n = 1, 2, 3, ... are the imaginary roots of the

dispersion relation (3.2.9).
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Note that ∫

C
ϕI ∂ϕI

∂n
dS

is a constant and drops out upon extremization, (4.4.24) can be rewritten as

F =

I1︷ ︸︸ ︷∫

V

1

2
(∇ϕD)2dV +

I2︷ ︸︸ ︷∫

SF

−ω2

2g

(
ϕD
)2

dS +

I3︷ ︸︸ ︷∫

C

ϕ̃R

2

∂ϕ̃R

∂n
dS +

I4︷ ︸︸ ︷∫

C
−ϕD ∂ϕ̃R

∂n
dS

+

I5︷ ︸︸ ︷∫

C
ϕI ∂ϕ̃R

∂n
dS +

I6︷ ︸︸ ︷∫

C
−ϕD ∂ϕI

∂n
dS (4.4.26)

4.4.2 2-D Finite element formulation

In the finite element region, standard 3-node elements with piece-wise linear potentials

are defined within each element:

ϕD =
3∑

i=1

ϕiNi(x, z) (4.4.27)

where ϕi is an unknown nodal potential and Ni(x, z) is a interpolation function

Ni = (ai + bix + ciz)/24 (4.4.28)

i = 1, 2, 3, with





a1 = xe
2z

e
3 − xe

3z
e
2

b1 = ze
2 − ze

3

c1 = xe
3 − xe

2





a2 = xe
3z

e
1 − xe

1z
e
3

b2 = ze
3 − ze

1

c2 = xe
1 − xe

3





a3 = xe
1z

e
2 − xe

2z
e
1

b3 = ze
1 − ze

2

c3 = xe
2 − xe

1

4 is the area of the triangle element,

4 =
a1 + a2 + a3

2

Note that the nodal numbering sequence must be counter-clock-wise (see Figure 5.1) to

ensure that the area of the triangle is positive.

In matrix form,

ϕD =
[

N1 N2 N3

]



ϕ1

ϕ2

ϕ3




= N {ϕ̂} (4.4.29)
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therefore,

(∇ϕD)2 = (
∂ϕD

∂x
)2 + (

∂ϕD

∂z
)2 =

[
∂ϕ
∂x

∂ϕ
∂z

]



∂ϕ
∂x

∂ϕ
∂z


 (4.4.30)

Let us define



∂ϕD

∂x

∂ϕD

∂z


 =




∂N1

∂x
∂N2

∂x
∂N3

∂x

∂N1

∂z
∂N2

∂z
∂N3

∂z







ϕ1

ϕ2

ϕ3




= Bϕ̂

From 4.4.27 we can calculate B to obtain

B =
1

24




b1 b2 b3

c1 c2 c3




On the imaginary boundary x = xC ,

∂ϕ̃R

∂n
= −∂ϕ̃R

∂x
=

∞∑

n=0

µnikne−iknxC
cosh [kn(z + h)]

cosh knh
(4.4.31)

and
∂ϕI

∂n
= −∂ϕI

∂x
=

−gAk0

ω
eik0xC

cosh [k0(z + h)]

cosh(k0h)
(4.4.32)

Next, we evaluate the integrals one by one.

1) I1

For an element V el,

∫

V el
(∇ϕD)2dV el = {ϕ̂}T

∫

V el
BTBdV el {ϕ̂} = {ϕ̂}T [K1]

el {ϕ̂}

where [K1]
el is the element stiffness matrix

[K1]
el
ij =

bibj + cicj

44

After assemblage and redefining
{
ϕ̂D
}

as the global nodal potential vector, we get

I1 =
1

2

{
ϕ̂D
}T

[K1]
{
ϕ̂D
}

2) I2

We employ two-node linear truss element and carry out the integrations under the

local coordinate system. When mapping from global nodes to local nodes, we must

ensure the boundary normal points towards the right-hand side when viewing into the
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Figure 4.7: Local coordinate system for truss element

y-axis as we go from x1 to x2. In our example, we should integrate from node 2 to node

1 in Figure 4.7.

ϕ = ϕ1 +
x − x1

x2 − x1

(ϕ2 − ϕ1) =
x2 − x

x2 − x1

ϕ1 +
x − x1

x2 − x1

ϕ2 = h1ϕ1 + h2ϕ2

In matrix form,

{ϕ} =
[

h1 h2

]



ϕ1

ϕ2


 = H {ϕ̂} (4.4.33)

For an element with one face on the free surface, say z = 0,
∫

Sel
F

−ω2

g
ϕD2

dSel
F = {ϕ̂}T

∫ x2

x1

−ω2

g
HTHdx {ϕ̂} = {ϕ̂}T [K2]

el {ϕ̂}

where [K2]
el is the element stiffness matrix. In the local coordinate system,

[K2]
el = −ω2

g




1
3

1
6

1
6

1
3


 (x2 − x1)

After assemblage and using the global ϕ̂, we can get

I2 =
1

2

{
ϕ̂D
}T

[K2]
{
ϕ̂D
}

3) I3

We integrate from −h to 0 on the imaginary boundary x = xC so that the right-hand

rule is obeyed.
∫

C
ϕ̃R ∂ϕ̃R

∂n
dS =

∫ 0

−h
dz

N∑

m=0

µme−ikmxC
cosh [km(z + h)]

cosh kmh

N∑

n=0

µnikne−iknxC
cosh [kn(z + h)]

cosh knh

=
N∑

m=0

N∑

n=0

iknµmµne−ikmxCe−iknxC

cosh(kmh) cosh(knh)

∫ 0

−h
cosh [km(z + h)] cosh [kn(z + h)] dz

=
N∑

n=0

iknCnµ2
ne−2iknxC

cosh2(knh)
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where use has been made of the orthogonality of the eigen functions and

Cn =
∫ 0

−h
cosh [kn(z + h)] cosh [kn(z + h)] dz =

1

2kn
(qn +

1

2
sinh 2qn) (4.4.34)

with qn = knh. If we define an unknown column coefficient vector

{µ̂} =
[

µ0 µ1 · · · µN

]T

then the integral can be written in matrix form

∫

C
ϕ̃R ∂ϕ̃R

∂n
dS = {µ̂}T [K3] {µ̂}

where K3 is a diagonal and

[K3]j,j =
iknCne−2iknxC

cosh2(knh)

where

j = n + 1

Therefore

I3 =
1

2
{µ̂}T [K3] {µ̂}

4) I4

We still use local coordinate system as in 2) but replace x with z. Therefore,

H =
[

h1 h2

]
=
[

z2−z
z2−z1

z−z1

z2−z1

]
(4.4.35)

Keep it in mind that the mirror from global nodes to local ones must be correct.

∫

Cel
ϕD ∂ϕ̃R

∂n
dCel

=
∫ z2

z1

dzH {ϕ̂}
N∑

n=0

µnikne−iknxC
cosh [kn(z + h)]

cosh knh

= {ϕ̂}T
∫ z2

z1

dzHTM {µ̂}

= {ϕ̂}T [K4]
el {µ̂}

where [K4]
el is element stiffness matrix and M is a row vector with

Mn+1 = ikne−iknxC
cosh [kn(z + h)]

cosh knh
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Therefore

[K4]
el
1,n+1

=
∫ z2

z1

dz h1ikne−iknxC
cosh [kn(z + h)]

cosh knh

=
ie−iknxC

cosh knh

{
1

kn(z2 − z1)
{cosh [kn(z2 + h)] − cosh [kn(z1 + h)]} − sinh [kn(z1 + h)]

}

[K4]
el
2,n+1

=
∫ z2

z1

dz h2ikne−iknxC
cosh [kn(z + h)]

cosh knh

=
ie−iknxC

cosh knh

{
sinh [kn(z2 + h)] − 1

kn(z2 − z1)
{cosh [kn(z2 + h)] − cosh [kn(z1 + h)]}

}

After assemblage, we get

I4 = −
{
ϕ̂D
}T

[K4] {µ̂}

5) I5

Integrate from −h to 0, we get

∫

C
ϕI ∂ϕ̃R

∂n
dS =

∫ 0

−h
dz

−igA

ω

cosh [k0(z + h)]

cosh(k0h)
eik0xC

N∑

n=0

µnikne−iknxC
cosh [kn(z + h)]

cosh knh

=
−igAik0

ω

C0µ0

cosh2(k0h)
eik0xCe−ik0xC

(4.4.36)

where C0 is defined in (5.3.7). Use has been made of the orthogonality of the eigen

functions in z. Therefore

I5 = [K5] {µ̂}

where [K5] is a row vector with the first component being non-zero

[K5]1 =
gAk0C0

ω cosh2(k0h)

6) I6

We use the same local coordinate system as in 4), i.e.

H =
[

h1 h2

]
=
[

z2−z
z2−z1

z−z1

z2−z1

]
(4.4.37)
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Therefore,

∫

Cel
ϕD ∂ϕI

∂n
dCel =

∫ z2

z1

dzH {ϕ̂} −gAk0

ω
eik0xC

cosh [k0(z + h)]

cosh(k0h)

= ϕ̂T
∫ z2

z1

dzHT −gAk0

ω

cosh [k0(z + h)]

cosh(k0h)
eik0xC

= {ϕ̂}T [K6]
el

where [K6]
el is element stiffness matrix and note that we must mirror in the correct way.

It follows that

[K6]
el
1

=
∫ z2

z1

dz h1
−gAk0

ω

cosh [k0(z + h)]

cosh(k0h)
eik0xC

=
−gAeik0xC

ω cosh k0h

{
1

k0(z2 − z1)
{cosh [k0(z2 + h)] − cosh [k0(z1 + h)]} − sinh [k0(z1 + h)]

}

[K6]
el
2

=
∫ z2

z1

dz h2
−gAk0

ω

cosh [k0(z + h)]

cosh(k0h)
eik0xC

=
−gAeik0xC

ω cosh k0h

{
sinh [k0(z2 + h)] − 1

k0(z2 − z1)
{cosh [k0(z2 + h)] − cosh [k0(z1 + h)]}

}

After assemblage,

I6 = −
{
ϕ̂D
}T

[K6]

and [K6] is a column vector.

In summary, the stationary functional for the reflected plane waves is

F(
{
ϕ̂D
}

, µ̂) =
1

2

{
ϕ̂D
}T

[K1]
{
ϕ̂D
}

+
1

2

{
ϕ̂D
}T

[K2]
{
ϕ̂D
}

+
1

2
{µ̂}T [K3] {µ̂}

−
{
ϕ̂D
}T

[K4] {µ̂} + [K5] {µ̂} −
{
ϕ̂D
}T

[K6] (4.4.38)

By Rayleigh-Ritz principle the first derivative with respect to unknowns ϕi and µi

vanishes. Therefore

[K1]
{
ϕ̂D
}

+ [K2]
{
ϕ̂D
}
− [K4] {µ̂} = [K6] (4.4.39)

[K3] {µ̂} − [K4]
T
{
ϕ̂D
}

= − [K5]
T (4.4.40)
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Equation (4.4.40) gives

{µ̂} = [K3]
−1 ([K4]

T
{
ϕ̂D
}
− [K5]

T ) (4.4.41)

When it is substituted into (4.4.39), we get

{
[K1] + [K2] − [K4] [K3]

−1 [K4]
T
} {

ϕ̂D
}

= [K6] − [K4] [K3]
−1 [K5]

T (4.4.42)

Thus
{
ϕ̂D
}

is obtained. Replacing
{
ϕ̂D
}

into (4.4.41) we get {µ̂}. Afterwards the

reflected wave potential is known in both the finite element and the super element.

4.5 Gate dynamics

With the radiation potentials known for unit displacement amplitudes, we can calculate

the hydrodynamic forces on the gate. From the dynamical equations of gates, the

angular displacements can then be found. These matters are discussed in the following

chapters.
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Chapter 5

Validation for vertical gates

For demonstration and validation of our 2- and 3-D numerical schemes, we consider first

a barrier made of vertical gates. As reported by Adamo and Mei(2003), the radiation

problem on the sea side can be solved analytically by eigenfunction expansions. On

the lagoon side analytical solution can be solved by using Green’s function. These

results provide benchmarks for checking the correctness and accuracy of the numerical

computations by scheme of HFEM. Due to the simple geometry, application of the

hybrid element scheme is also relatively simple. On the lagoon side, it is only necessary

to choose C large enough to enclose one gate.

5.1 2- D diffraction

We first use the standing-wave solution near a vertical wall as a check for the 2-D

numerical solution. The analytical solution for the diffraction potential (incident and

reflected wave potentials) in front of the wall is

ϕD =
−2igA

ω

cosh [k0(z + h)]

cosh(k0h)
cos(k0x) (5.1.1)

To compare with the analytical solution, we develop the hybrid-finite-element scheme

with the element mesh shown in Figure 5.1.

The numerical results are compared with the analytical solution (5.1.1) in Table 5.1

for the velocity potential on the first 20 nodes of our mesh. The agreement is excellent.
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Figure 5.1: 2-D Finite element mesh for the diffraction problem

5.2 Dynamics of individual gates

We must now solve the radiation problems due to the motion of gates.

Consider a typical gates of width of B executing rotational oscillations with angular

displacement

Θ(t) = ϑe−iωt (5.2.2)

Conservation of angular momentum gives

IΘtt + CΘ = −ρ
∫∫

S
(0)
B

(
ΦD

t + Φ−
t − Φ+

t

)
(z + h)dS (5.2.3)
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Figure 5.2: Coordinate system on the gate

where Φ± is the spatial factors of the total potential on one side of the gate, I is the

mass moment of inertia about the bottom hinge at O (see Figure 5.2)

I =
∫∫∫

V
ρ(x2 + (z + h)2)dV ; (5.2.4)

and C is the total restoring torque due to buoyancy and weight of the gate

C = ρg(IA
xx + IV

z ) − Mg(z̄c − Z(0)) (5.2.5)

with

IA
xx =

∫∫

S
(0)
A

(x − X(0))2dx, IV
z =

∫∫∫

V (0)
(z − Z(0))dxdz

For the vertical gate of rectangular cross section hinged on the bottom,

C = ρg
B

2

[
h2 +

2

3

(
B

2

)2
]
− Mg(z̄c + h) (5.2.6)

where B is the width of the gate.
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Figure 5.3: Schematic geometry for N vertical gates

5.3 Radiation problems and hydrodynamic torques

5.3.1 Sea side

For vertical gates let us first get the analytical solution.

In the global coordinate system, we denote by ~L the horizontal displacement of the

gate,

~L = (z + h)ϑ(y)e−iωtx̂ (5.3.1)

where x̂ is the unit vector in the x direction. In this definition counter-clockwise rotation

is positive when viewed from y ∼ ∞, i.e., towards the x − z plane along the negative

direction of y. Therefore ϑ > 0 as the gate inclines towards the lagoon. Matching the

normal velocities of the gate and of the adjacent fluid, we get

∂Φ−

∂x
= −iω(z + h)ϑ(y)e−iωt at x = 0 (5.3.2)

After substituting (3.2.14) into (5.3.2) we get

∞∑

m=0

∞∑

n=0

Amnαmn cos
mπy

a
cosh [kn(z + h)] = ω(z + h)ϑ(y) (5.3.3)

By orthogonality we can derive the expression for Amn

Amn = ω
bmDn

Cnαmn
(5.3.4)
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where

bm =
εm

2a

∫ a

−a
ϑ(y) cos(

mπy

a
)dy (5.3.5)

with

ε0 = 1, εm = 2, m = 1, 2, 3, . . . (5.3.6)

being the Jacobi symbol,

Cn =
∫ 0

−h
cosh[kn(z + h)] cosh[kn(z + h)]dz =

1

2kn
(qn +

1

2
sinh 2qn) (5.3.7)

Dn =
∫ 0

−h
(z + h) cosh[kn(z + h)]dz =

1

k2
n

(qn sinh qn − cosh qn + 1) (5.3.8)

and qn = knh.

Finally the radiation potential on the sea side is

ϕ− = ω
∞∑

m=0

bm cos
mπy

a

∞∑

n=0

Dn

Cnαmn
e−iαmnx cosh [kn(z + h)] (5.3.9)

With N gates across the channel, we use different numbers to distinguish the gates,

counting from center to the bank as shown in Figure 5.3. A vector can be defined to

describe the unknown amplitude of the N gates

ϑ̂ =
[

θ1 ϑ2 · · · ϑj · · · ϑN

]T
(5.3.10)

where ϑj represents the angular displacement amplitude of the jth gate. Therefore on

the sea side, ϑ(y) in (5.3.1) becomes

ϑ(y) =





ϑ1 , y ∈ Y1 = (−a, −a + B)

ϑ2 , y ∈ Y2 = (−a + B, −a + 2B)
...

ϑj , y ∈ Yj = (−a + (j − 1)B, −a + jB)
...

ϑN , y ∈ YN = (−a + (N − 1)B, a)

(5.3.11)

where B = 2a
N

is the width of one gate. Substituting this into (5.3.5), we get

bm =
εm

2a

[∫ −a+B

−a
ϑ1 cos(

mπy

a
)dy +

∫ −a+2B

−a+B
ϑ2 cos(

mπy

a
)dy + · · ·+

∫ a

−a+(N−1)B
ϑN cos(

mπy

a
)dy

]
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It follows that

b0 =
1

2a

2a

N
(ϑ1 + ϑ2 + · · ·+ ϑN ) =

1

N
(ϑ1 + ϑ2 + · · ·+ ϑN )

and

bm =
ϑ1

mπ
sin(

(2 − N)mπ

N
) +

ϑ2

mπ

[
sin(

(4 − N)mπ

N
) − sin(

(2 − N)mπ

N
)

]
+ · · ·

+
ϑj

mπ

[
sin(

(2j − N)mπ

N
) − sin(

(2(j − 1) − N)mπ

N
)

]
+ · · · − ϑN

mπ
sin(

(N − 2)mπ

N
)

for m 6= 0.

From (5.3.9), the potential Φ− can be written as

Φ− = (ϑ1φ
−
1 + ϑ2φ

−
2 + · · · + ϑjφ

−
j + · · ·+ ϑNφ−

N)e−iωt (5.3.12)

where

φ−
j = ω

{
1

N

∞∑

n=0

Dn

Cnkn

e−iknx cosh [kn(z + h)]

+
∞∑

m=1

1

mπ

[
sin(

(2j − N)mπ

N
) − sin(

(2(j − 1) − N)mπ

N
)

]
cos

mπy

a
∞∑

n=0

Dn

Cnαmn
e−iαmnx cosh [kn(z + h)]

}

is the radiation potential due to the motion of the jth gate, when all others are stationary.

In order to express the right-hand side of (5.2.3) more explicitly, we define the excitation

on pth gate due to the unit amplitude motion of the jth gate,

F−
pj = iωρ

∫

Sp
B

dy
∫ 0

−h

[
φ−

j

]
x=0

(z + h)dz (5.3.13)

Therefore

F−
pj = iρω2a

{
2

N2

∞∑

n=0

D2
n

Cnkn

+
∞∑

m=1

1

m2π2

[
sin(

(2j − N)mπ

N
) − sin(

(2(j − 1) − N)mπ

N
)

]

[
sin(

(2p − N)mπ

N
) − sin(

(2(p − 1) − N)mπ

N
)

] ∞∑

n=0

D2
n

Cnαmn

}

It is easy to see that F−
pj = F−

jp.
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Since the diffraction potential (sum of incident and reflected wave potentials) on the

sea side is

ΦD =
−igA

ω

cosh [k0(z + h)]

cosh(k0h)
(e−ik0x + eik0x)e−iωt =

−2igA

ω

cosh [k0(z + h)]

cosh(k0h)
cos(k0x)e−iωt

(5.3.14)

The excitation force on j-th (stationary) gate is simply

F D
j = iωρ

∫

Sj
B

dy
∫ 0

−h

[
φD
]
x=0

(z + h)dz =
2ρgAD0

cosh(k0h)

2a

N
(5.3.15)

5.3.2 The lagoon side

On the lagoon side, the radiation potential can be obtained by the Hybrid Finite Element

Method. Recall that in examining the effect of each gate, all other gates are assumed

to be stationary. Since the problem is in the half plane and all gates are situated on the

same vertical plane, the radiation potential due to the motion of any single gate takes on

the same form, except for a shift of origin. It is therefore only necessary to consider any

one of the gates, say, the j-th gate. The near field, defined by the semi-circular cylinder

bounded by C and centered at the center of gate j, is discretized by finite elements.

In the super-element outside C, the potential is expressed by the series expansion. We

apply the numerical scheme in Section 3.3, where the coordinate system is local. In this

local coordinate system, the horizontal displacement of the gate can be expressed as

~L = (z + h)ϑ(y)e−iωtx̂

where x̂ is the unit vector in x direction. Note that ϑ > 0 if the gate rotates towards

lagoon. Then the horizontal velocity of the gate is

~̇L = −iω(z + h)ϑ(y)x̂e−iωt

Since the normal ~n on the gate surface points outward from the fluid as shown in the

figure, matching gate velocity and adjacent fluid for unit angular-displacement amplitude

of the gate motion gives the boundary condition on the moving gate

∂φ+
j

∂n
= −iω(z + h)x̂ · (−x̂) = iω(z + h), on gate j only (5.3.16)

which is to be used in (4.3.15) to calculate K5. From the numerical solution by the

Hybrid Finite Element Method, the radiation potential φl
j is found.
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Let us define F+
pj to be the exciting force on p-th gate due to the unit amplitude

motion of the j-th gate. Then

F+
pj = −iωρ

∫ 2|j−p|a
N

+ a
N

2|j−p|a
N

− a
N

dr
∫ 0

−h

[
φ+

j

]
θ=0 or θ=π

(z + h)dz (5.3.17)

where use is made of Φ+
j = φ+

j e−iωt. For p = j, the integral above is carried out

numerically.

F+
jj = −iρω

∑

el∈SB

∫

S+
B

φ+
j (z + h)dS+

B = −iρω
∑

el∈SB

∫ +1

−1

∫ +1

−1

[
(z + h)Hφ̂det(J)

]
ξ=1

dηdζ

For p 6= j, we make use of the series expansion (3.3.18) for the super element. Therefore

F+
pj = −iωρ

∫ 2|j−p|a
N

+ a
N

2|j−p|a
N

− a
N

∫ 0

−h
{

∞∑

m=0

∞∑

n=0

µmn
cosh [kn(z + h)]

cosh(knh)

H
(1)
2m(knr)

H
(1)
2m(knrC)

}(z + h)drdz

= −iωρ
∞∑

m=0

∞∑

n=0

µmn

cosh(knh)

∫ 2|j−p|a
N

+ a
N

2|j−p|a
N

− a
N

H
(1)
2m(knr)

H
(1)
2m(knrC)

dr
∫ 0

−h
cosh [kn(z + h)] (z + h)dz

= −iωρ
∞∑

m=0

∞∑

n=0

µmnDn

cosh(knh)H
(1)
2m(knrC)

∫ 2|j−p|a
N

+ a
N

2|j−p|a
N

− a
N

H
(1)
2m(knr)dr

Recall that the local coordinates are used here. It is evident again that F+
pj = F+

jp.

Now the gate dynamics.

In matrix form, the dynamic equations of the N gates are

−ω2Iϑ̂ + Cϑ̂ = F−ϑ̂ + F+ϑ̂ + FD (5.3.18)

where I and C are diagonal. Fs and Fl are symmetric and their components are defined

above with FD being a known vector.

We test the HFEM code for a vertical gate with the overall dimensions similar

to those of the Malamocco gate. The height is reduced to 20m (about 2
3

height of

prototype gate) and the thickness is kept at 4.5m. The mass center Xg is 10m above

the sea bottom. For the dry weight the gate walls are estimated as 3cm thick steel

plate with density being 7700kg · m−3.). The calculated parameters are as follows:

moment of inertia I = 33.337e6 kg · m2, weight W = 2619kN , buoyancy restoring

torque C = 60.246e6 kg ·m2 · s−2, gate width B = 20m, water depth h = 14.0m, density

of water ρ = 1000kg · m−3, gravity g = 9.8m · s−2.
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Figure 5.4: Simplified Malamocco flapgate

As an extra check, we have modified the HFEM method by using a rectangular box

for the imaginary boundary C, and compare the nodal potentials from the semi-circular

imaginary boundary C. Referring to Figure 5.4 and Figure 5.5, the potential values at

13 nodes along the center line of the gate are compared in Table 5.2. The agreement is

excellent.

For later application of HFEM to inclined gates, we test the numerical scheme by

applying finite elements in front of 5 vertical gates on sea side. In Table 5.3 the hydro-

dynamic forces F−
ij from the analytical solution (5.3.14) are compared with those from

numerical computations. The complex values in the table are expressed in the form of

modulus × 107 kg · m2 · s−2 and angle 6 phase angle. The agreement is excellent.

Next we apply HFEM for 20 vertical gates by using a rectangular imaginary boundary

on the lagoon side, and complete the scattering/radiation problem for normally incident

waves for a wide range of periods. After accounting for the gate dynamics, the computed

maximum gate amplitudes vs. periods are plotted in Figure 5.6. For comparison, the

analytical theory by Adamo & Mei (2003) in Report IV are marked in circles. The

agreement is also excellent except in certain peak amplitudes. This is likely due to the

coarse increments in period in the analytical computation. Finally the computational
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Figure 5.5: Semi-circle boundary and mesh
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Figure 5.6: Rectangular boundary and mesh
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Figure 5.7: Maximum gate amplitudes for a wide range of incident wave periods. The

total number of gates is 20.

accuracy is checked by computing the error defined by the difference in energy input

and output as derived in Chapter 5,

error =
|Ein − Eout|

|Ein|
(5.3.19)

The error is shown in Figure 5.7, showing good accuracy.
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Node number Numerical Analytical

1 -0.0016 -56.5758i -56.5806i

2 -0.0016 -55.9094i -55.9139i

3 -0.0015 -55.2947i -55.2991i

4 -0.0015 -54.7313i -54.7355i

5 -0.0015 -54.2186i -54.2227i

6 -0.0015 -53.7561i -53.7601i

7 -0.0015 -53.3434i -53.3473i

8 -0.0015 -52.9802i -52.9840i

9 -0.0015 -52.6661i -52.6699i

10 -0.0015 -52.4007i -52.4045i

11 -0.0015 -52.1840i -52.1878i

12 -0.0015 -52.0156i -52.0194i

13 -0.0014 -51.8955i -51.8992i

14 -0.0014 -51.8234i -51.8271i

15 -0.0014 -51.7994i -51.8031i

16 -0.0016 -56.5496i -56.5544i

17 -0.0016 -55.8835i -55.8880i

18 -0.0015 -55.2691i -55.2735i

19 -0.0015 -54.7059i -54.7101i

20 -0.0015 -54.1934i -54.1975i

Table 5.1: Comparison of nodal potentials for sea side diffraction
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Node number Semi-circular C Rectangular C

1 -25.6121 +45.8337i -25.8621 +46.3792i

2 -25.2623 +44.7986i -25.5089 +45.2938i

3 -24.9443 +42.5915i -25.1879 +43.6928i

4 -24.6579 +40.1952i -24.8986 +41.8085i

5 -24.4026 +38.2469i -24.6408 +39.7328i

6 -24.1780 +36.1568i -24.4140 +37.5615i

7 -23.9840 +34.1091i -24.2181 +35.3621i

8 -23.8202 +32.1003i -24.0528 +33.2030i

9 -23.6865 +30.2101i -23.9177 +31.1555i

10 -23.5827 +28.5043i -23.8129 +29.2896i

11 -23.5086 +27.0760i -23.7381 +27.7120i

12 -23.4642 +26.0329i -23.6933 +26.5248i

13 -23.4494 +25.5949i -23.6783 +25.9987i

Table 5.2: Comparison of nodal potentials for two types of imaginary boundary and

mesh scheme
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j → 1 2 3 4 5

i ↓ mag. : phase◦ mag. : phase◦ mag. : phase◦ mag. : phase◦ mag. : phase◦

1 anal. 8.9142 :7.1733 4.1764 :15.4579 1.3472 :124.2858 4.9018 :166.8744 7.1987 :171.1047

1 num. 8.9098 :7.1774 4.1769 :15.4570 1.3472 :124.2809 4.9003 :166.8694 7.1963 :171.1011

2 anal. 4.1764 :15.4579 4.2100 :15.3313 1.1132 :89.4604 3.2913 :160.2323 4.9018 :166.8744

2 num. 4.1769 :15.4570 4.2053 :15.3499 1.1133 :89.3579 3.2904 :160.2252 4.9003 :166.8694

3 anal. 1.3472 :124.2858 1.1132 :89.4604 2.0503 :32.880 1.1132 :89.4604 1.3472 :124.2858

3 num. 1.3472 :124.2809 1.1133 :89.3579 2.0470 :32.9444 1.1133 :89.3579 1.3472 :124.2809

4 anal. 4.9018 :166.8744 3.2913 :160.2323 1.1132 :89.464 4.2100 :15.3313 4.1764 :15.4579

4 num. 4.9003 :166.8694 3.2904 :160.2252 1.1133 :89.3579 4.2053 :15.3499 4.1769 :15.4570

5 anal. 7.1987 :171.1047 4.9018 :166.8744 1.3472 :124.2858 4.1764 :15.4579 8.9142 :7.1733

5 num. 7.1963 :171.1011 4.9003 :166.8694 1.3472 :124.2809 4.1769 :15.4570 8.9098 :7.1774

Table 5.3: Comparison of numerical and analytical solutions for hydrodynamic torque

F−
ij .. (Torque on the sea side of gate j due to unit motion of gate i. )
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Chapter 6

Inclined gates

Venice storm gates are designed to operate at the equilibrium inclination of 45◦ ∼
50◦ from the horizon. To solve the diffraction problem when the gates are stationary,

two dimensional finite elements are distributed near the gates on the sea side. For

the radiation potentials, three dimensional finite elements are needed on both the sea

side and the lagoon side. To reduce computations we take advantage of symmetry for

normally incident waves. Only one half of the fluid domain needs to be considered. The

finite element domains cover half of the gates in a barrier.

We first discuss the simulation of the 1/30 model of seven gates (two half gates and

five full gates) spanning half the inlet. Numerical results for 20 gates spanning Chioggia

inlet will be presented.

For the 2-D diffraction potential on the sea side, the finite element mesh is shown in

Figure 6.

For the inclined gates, there is no analytical solution. However, the magnitude of

the reflection coefficient is expected to be unity. In other words the potential amplitude

of the reflected wave in the far field is expected to be the same as that of the incident

waves. Recalling (4.4.25), the first mode corresponds the reflected wave (other modes

are evanescent). Therefore we can compare the coefficient µ0 with g/ω from the incident

wave. As an example, we use incident period T = 5.5s. Therefore g/ω = 8.5785 and

we obtain from our numerical method µ0 = −8.4869 − 1.2497i. The absolute value is

|µ0| = 8.5785 which agrees with the analytical result.

By numerical integration of the pressure on the gate surface, the diffraction torque
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Figure 6.1: Finite element mesh on the sea side of an inclined gate.

is found.

For the 3D radiation problems due to unit motion of one gate, finite elements on the

sea side are distributed in front of all gates, as shown in Figure 6.2.

On the lagoon side, the finite elements will be displayed later.

6.1 Comparison with measurements for a 1/30 model

Ing. Alberto Venuti, of Protecno has kindly provided us some information on the

Voltaborozzo experiments for a 1/30 model with five whole gates and two half gates

spanning one half of the inlet. The following gate data are cited in Table 6.1: In our

numerical simulations we use the immersed values in the table. From the geometry the

diagonal buoyancy torque C = Cij = Cδij is calculated to be 93,000 kN-m. The depth

is h = 11 m on both side the gate.

Also we assume that the gates are so situated that at depth h = 11 m the water line
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Figure 6.2: Finite element mesh for sea side radiation

on the lagoon side coincides with the coastline.

We report below numerical simulations for 9 tests of regular waves : code named

Reg1002500−30 to Reg1302500−30. Listed in Table 6.2 are the maximum amplitude of

the gate rotation (in degrees) for the same (9) incident wave periods, all with the same

incident wave height of 2.5m and 0.0m water depth difference. All gates have essentially

the same phase, therefore there is no resonance.

With an equilibrium inclination of 42.5 degrees, we plot the maximum absolute oscil-

lations versus period curves in Figure 6.3. For comparison, the CVN data is reproduced

in Figure 6.4. The agreement is good.

For the 7 gates model configuration, we have also carried out a series of computations
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Figure 6.3: Numerical results for maximum absolute oscillations
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Figure 6.4: Measured absolute oscillations by CVN for 1/30 model
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Immersed conditions Dry conditions

Weight(kN) 2498.88 3103.65

X center of mass (m) 14.76 13.95

Y center of mass (m) -1.83 -1.8

Moment of inertia (kg m2) 85973400 85973400

Table 6.1: Characteristics of 1/30 model in Voltaborozzo experiments

Reg1??2500-30 00 04 06 07 10 15 20 25 30

period (sec) 10.0 10.4 10.6 10.7 11.0 11.5 12.0 12.5 13.0

Ampl (degr..) 5.1698 5.4624 5.6980 5.8221 6.2234 7.0276 8.3192 6.9134 7.1475

Max. (degr.) 47.6698 47.9624 48.1980 48.3221 48.7234 49.5276 59.8192 49.4134 49.6475

Min. (degr.) 37.3302 37.0376 36.8020 36.6766 36.2776 35.4724 34.1808 35.5866 35.3525

Table 6.2: Numerical results for the maximum amplitude of all gates.. Responses to

regular waves. The test is identified in the top row according to CVN code: Reg-

1??2500-30, etc.

for a wide range of incident wave periods from 9 seconds to 22 seconds. The response

curve of maximum amplitude (in radians) versus period is plotted in Figure 6.5. Within

this period range, three resonance peaks are found at 16.6 sec, 17.3 sec and 19.5 sec

respectively. The first peak with the lowest period (highest frequency) corresponds to

Mode 1 resonance in which the neighboring gates are in opposite phase and all gate

amplitudes are essentially equal. The complex amplitudes of the seven gates are listed

in Table 6.3 and the modal shape is shown in Figure 6.6. That the resonance period is

so much longer than the earlier designs (∼ 12.5sec) may be explained by the new and

much larger gate dimensions and weight.

The corresponding error curve by energy conservation is plotted in Figure 6.7. The

maximum error is less than 0.25 percent, and is acceptable.
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Figure 6.5: Numerical results for maximum amplitude of the 7 gates on a range of period
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Figure 6.6: Modal shape of the seven gate in response to 16.6 sec incident wave.
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Gate 1 Gate 2 Gate 3 Gate 4

0.827+0.0074i -0.909+0.228i 0.82+0.0041i -0.891+0.217i

Gate 5 Gate 6 Gate 7

0.793-0.0058i -0.873+0.197i 0.70-0.0133i

Table 6.3: Complex amplitudes of seven gates in response to 16.6 sec. incident wave.

Gate 1 and gate 7 are half gates at the center and the edge of the inlet.

6.2 Response of a 20-gates barrier to regular inci-

dent waves

As the final example, we now apply our HFEM code for a 20-gates barriers with the

design dimensions of Chioggia Inlet, as specified in the 1/30 model of Volraborozzo. In

addition, the housing is included. The finite element meshes are shown in Figure 6.8 for

a side view of the center plane. The top view is shown in Figure 6.9. A three-dimensional

perspective is shown in Figure 6.10. Note that the design geometry of the gate and the

housing are included1.

Figure 6.11 shows the single frequency response of maximum gate amplitude for

incident waves of 2.5m wave height. The gates move in phase at the minor peak at

period 13 sec . At the second major peak of 16.8 sec, neighboring gates are in opposite

phases as can be inferred from the complex amplitudes listed in Table 6.4. As a further

proof we show in Figure 6.12 the gate positions. Note that not only are neighboring

gates in opposite phases. but the envelope has a minimum at the edge and at the center

of the inlet, and maximum at the quarter point of the inlet. This is precisely as predicted

in Figure 9, p. 14. Report Part III July 10, 2003!!!

The energy error of these computations are shown in Figure 6.13, and is quite ac-

ceptable.

With the potentials and gate displacements found, other design information such as

the total torque on each gate can be calculated.

1Using Matlab the reader can view the grids at any angle.
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Figure 6.7: Error defined by energy conservation for the 7-gates model.

Gate 1 Gate 2 Gate 3 Gate 4 Gate 5

-0.0215 + 0.1104i -0.1193 + 0.1243i 0.0729 + 0.1000i -0.1893 + 0.1364i 0.1284 + 0.0944i

Gate 6 Gate 7 Gate 8 Gate 9 Gate 10

-0.2123 + 0.1391i 0.1231 + 0.0914i -0.1829 + 0.1273i 0.0530 + 0.0886i -0.1351 + 0.1060i

Table 6.4: Complex amplitudes of 10 gates (one half of Chioggia Inlet barrier) in response

to incident wave of period =16.8 sec.

69



−20 0 20 40 60 80 100 120

−60

−40

−20

0

20

40

Figure 6.8: Finite element mesh for lagoon side radiation– perspective from the center

plane along the x-axis. Mesh lines in vertical planes parallel to the centerplanes are also

seen.
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Figure 6.9: Finite element mesh for lagoon side radiation–the top view.
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Figure 6.10: Finite element mesh for lagoon side radiation–the 3-D perspective

72



12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17
0.05

0.1

0.15

0.2

0.25

0.3

Period (s)

M
ax

im
um

 A
m

pl
itu

de

Figure 6.11: Single-frequency response of the 20-gates barrier to regular incident wave.

Maximum gate amplitude is in radians. The peak at 16.8 sec corresponds to out-of-phase

resonance of Mode N 2. the peak at 13 sec show in- phase motion only.
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Figure 6.12: Modal shape of the 20-gates in response to 16.8 sec incident wave. Only

one half of the symmetric inlet (10 gates) is shown.
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Figure 6.13: Error defined by energy conservation for the 20-gates barrier.
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Chapter 7

Concluding remarks

For the linear response of multi-gates barrier spanning an inlet with jetties only on the

seaside, both the theory and computer codes are now fully developed for inclined gates

with the complex gate geometry fully accounted for. Details are recorded in the manual.

The mathematical tool developed here can now be used to adjust the dimensions, the

inclination and the water depths, in order to minimize the danger of resonance.

To ensure greater safety in future operations, further study of gate response to ran-

dom incident waves with proper account of subharmonic resonance is important and is

proposed.

76



Appendix A

Energy conservation

A.1 Energy fluxes

Physically the incident wave energy on the sea side must be equal to the radiated wave

energy outflux on both sides. This identity can be derived by Green’s theorem, as shown

in Adamo & Mei (2003) for vertical gates, and will not be repeated here.

We first write down the energy fluxes in terms of the far-field solutions, and evaluate

the fluxes for vertical and inclined gates separately.

Using the global coordinate system defined in the Figure A.1, we express the total

potential Φ as

Φ(x, y, z, t) = Re{ϕ(x, y, z)e−iω t} (A.1.1)

The dynamical pressure is

p = −ρΦt = Re{iρωϕe−iω t}

Consider first the energy influx across a straight cross section in the far field of the

channel side x = X,

Ein =
∫ a

0

∫ 0

−h
pu dy dz =

∫ a

0

∫ 0

−h
pu dy dz =

∫ a

0

∫ 0

−h

1

2
Re{iρωϕϕ∗

x} dy dz

In the far field of the lagoon, the energy outflux across the circular cylinder r = R is

Eout =
∫ π

2

−π
2

∫ 0

−h
puRdϕdz =

∫ π
2

−π
2

∫ 0

−h

1

2
Re{iρωϕϕ∗

r}Rdσdz
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Figure A.1: Relation between local and global coordinate system

Equating the two fluxes, the identity of energy conservation(which can be derived by

Green’s theorem), reads

Ein = Eout ⇒
{∫ a

0

∫ 0

−h
Im{ϕϕ∗

x} dy dz
}

x=X
=

{∫ π
2

−π
2

∫ 0

−h
Im{ϕϕ∗

r}Rdσdz

}

r=R

For late checks of numerical accuracy we define the energy error as

error =
|Ein − Eout|

|Ein|
(A.1.2)

We now express the energy fluxes in terms of the gate displacement amplitudes. It

is convenient to treat the vertical and inclined gates separately.

A.2 Vertical gates

A.2.1 Sea side

On the sea side at x = X ∼ −∞,

ϕ = ϕI + ϕR + ϕ− = ϕD +
∑

φ−
j ϑj
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where ϕD is the diffraction potential due to incident and reflected wave as in (5.3.14)

ϕD =
−2ig

ω

cosh [k0(z + h)]

cosh(k0h)
cos(k0x) (A.2.3)

with unit incident wave amplitude A = 1. Normalized for unit rotation amplitude, φ−
j

is the radiation potential due to the oscillation of jth gate, as in (5.3.13). By retaining

only the propagating mode for large X, we get for the radiated waves due the motion

of gate j,

φ−
j ∼ ω

N

D0

C0k0

cosh [k0(z + h)] e−ik0x

+
M∑

m=1

ωD0

mπC0αm0

[
sin(

(2j − N)mπ

N
) − sin(

(2(j − 1) − N)mπ

N
)

]

cos
mπy

a
cosh [k0(z + h)] e−iαm0x (A.2.4)

where

αm0 =

√
k2

0 − (
mπ

a
)2

and M is the maximum m for real αm0.

∂φ−
j

∂x
∼ −iω

N

D0

C0
cosh [k0(z + h)] e−ik0x

+
M∑

m=1

−iωD0

mπC0

[
sin(

(2j − N)mπ

N
) − sin(

(2(j − 1) − N)mπ

N
)

]

cos
mπy

a
cosh [k0(z + h)] e−iαm0x

Therefore, the total potential is

ϕ ∼ −2ig

ω

cosh [k0(z + h)]

cosh(k0h)
cos(k0x) +

N∑

j=1

ϑj

{
ω

N

D0

C0k0

cosh [k0(z + h)] e−ik0x

+
M∑

m=1

ωD0

mπC0αm0

[
sin(

(2j − N)mπ

N
) − sin(

(2(j − 1) − N)mπ

N
)

]

cos
mπy

a
cosh [k0(z + h)] e−iαm0x

}

and the complex conjugate of the total velocity is

ϕx
∗ =

−2igk0

ω

cosh [k0(z + h)]

cosh(k0h)
sin(k0x) +

N∑

j=1

ϑ∗
j

{
iω

N

D0

C0
cosh [k0(z + h)] eik0x

+
M∑

m=1

iωD0

mπC0

[
sin(

(2j − N)mπ

N
) − sin(

(2(j − 1) − N)mπ

N
)

]
cos

mπy

a
cosh [k0(z + h)] eiαm0x

}
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Defining the following real parameters from brevity

a0 =
−2g

ω cosh(k0h)
; b0 =

ωD0

NC0k0
; bm(p) =

ωD0

mπC0αm0

[
sin(

(2j − N)mπ

N
) − sin(

(2(j − 1) − N)mπ

N
)

]
,

then

ϕϕx
∗ = cosh2 [k0(z + h)]



ia0 cos(k0x) +

N∑

p=1

ϑp

[
b0e

−ik0x +
M∑

m=1

bm(p) cos
mπy

a
e−iαm0x

]




ik0a0 sin(k0x) +

N∑

q=1

ϑ∗
q

[
ik0b0e

ik0x +
M∑

m=1

bm(q)iαm0 cos
mπy

a
eiαm0x

]


The energy influx is

∫ a

−a

∫ 0

−h
Im{ϕϕx

∗} dy dz = 2C0aIm



ia0 cos(k0x)

N∑

q=1

ϑ∗
q

(
ik0b0e

ik0x
)




+ 2C0aIm



ik0a0 sin(k0x)

N∑

p=1

ϑp

(
b0e

−ik0x
)




+ 2C0aIm





N∑

p=1

N∑

q=1

ϑpϑ
∗
qik0b

2
0





+ C0Im





N∑

p=1

N∑

q=1

ϑpϑ
∗
q

M∑

m=1

bm(p)bm(q)iαm0

∫ a

−a
cos2 mπy

a
dy





= −2C0ak0a0b0 cos2(k0x)Im





N∑

q=1

ϑ∗
q





+ 2C0ak0a0b0 sin2(k0x)Im





N∑

p=1

ϑp





+ 2C0ak0b
2
0Re





N∑

p=1

N∑

q=1

ϑpϑ
∗
q





+ C0Re





N∑

p=1

N∑

q=1

ϑpϑ
∗
q

M∑

m=1

bm(p)bm(q)αm0

∫ a

−a
cos2 mπy

a
dy





= 2C0ak0a0b0Im





N∑

j=1

ϑj





+ 2C0ak0b
2
0Re





N∑

p=1

N∑

q=1

ϑpϑ
∗
q





+ C0aRe





N∑

p=1

N∑

q=1

ϑpϑ
∗
q

M∑

m=1

bm(p)bm(q)αm0
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Some terms have disappeared due to either the orthogonality of cos mπy
a

or being purely

real. Use has been made of the general identities

Im {A} = −Im {A∗} ; (AB)∗ = A∗B∗

A.2.2 Lagoon side

On the lagoon side, there are only radiated waves,

ϕ = ϕ+ =
∑

φ+
j ϑj

where φ+
j is the radiation potential due to the rotation of j-th gate at unit amplitude, as

in (3.3.16). Referring to figure (A.1), we now employ the local coordinate system, whose

origin is located at the center of the jth gate, and has the global coordinate (0, Yj, 0).In

the far field (large R), we exclude evanescent modes corresponding to imaginary kn =

ik̄n, n = 1, 2, ...

φ+
j =

∞∑

m=0

νm0
cosh [k0(z + h)]

cosh(k0h)

H
(1)
2m(k0rj)

H
(1)
2m(k0rC)

cos 2mσj (A.2.5)

In the far field, yj

r
� 1, we have the approximate relation between local and global

coordinates up to the first order:

rj =
√

r2 + Y 2
j − 2rYj sin σ ' r

(
1 − Yj

r
sin σ + ...

)
; σj ' σ − Yj

r
cos σ + ...

where use has been made of the laws of cosines and sines. By Taylor expansion,

cos 2mσj = cos
[
2m

(
σ − Yj

r
cos σ + ...

)]
= cos 2mσ + 2m

Yj

r
sin 2mσ cos σ + ...

Making use of the asymptotic form of Hankel functions for large argument

H(1)
n (x) '

√
2

πx
ei[x−(n+ 1

2)
π
2 ]

it follows that

H
(1)
2m(k0rj) =

√
2

πk0r
ei(k0r−mπ−π

4
)e−ik0yj sin σ + O

(
Yj

r

√
1

k0r

)

and,

∂φ+
j

∂r
=

∞∑

m=0

νm0 cosh [k0(z + h)]

H
(1)
2m(k0rC) cosh(k0h)

ik0

[√
2

πk0r
ei(k0r−mπ−π

4
)e−ik0Yj sin σ cos 2mσ + O

(
1

k0r

√
1

k0r

)]
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ϕ+ϕ+
r
∗

=
N∑

p=1

N∑

q=1

ϑpφ
+
p ϑ∗

q

∂φ+
q

∂r

∗

=
cosh2 [k0(z + h)]

cosh2(k0h)

N∑

p=1

N∑

q=1

ϑpϑ
∗
q

∞∑

m=0

µm0

H
(1)
2m(k0rC)

∞∑

n=0

µ∗
n0

H
(1)∗
2n (k0rC)

[−2i

πr
ei(n−m)πe−ik0(Yp−Yq) sin σ cos 2mσ cos 2nσ

]

The total energy outflux is

∫ π
2

−π
2

∫ 0

−h
Im{ϕ+ϕ+

r
∗}Rdσdz = Im





−2iC0

π cosh2(k0h)

N∑

p=1

N∑

q=1

∞∑

m=0

∞∑

n=0

νm0ν
∗
n0ϑpϑ

∗
qe

i(n−m)π

H
(1)
2m(k0rC)H

(1)∗
2n (k0rC)

∫ π
2

−π
2

dσ
[
e−ik0(Yp−Yq) sin σ cos 2mσ cos 2nσ

]}

=
−2C0

π cosh2(k0h)
Re





N∑

p=1

N∑

q=1

∞∑

m=0

∞∑

n=0

νm0ν
∗
n0ϑpϑ

∗
qe

i(n−m)π

H
(1)
2m(k0rC)H

(1)∗
2n (k0rC)

∫ π
2

−π
2

dσ
[
e−ik0(Yp−Yq) sin σ cos 2mσ cos 2nσ

]}

Finally, equating the energy fluxes gives the following identity

2C0ak0a0b0Im





N∑

j=1

ϑj



 + 2C0ak0b

2
0Re





N∑

p=1

N∑

q=1

ϑpϑ
∗
q





+ C0aRe





N∑

p=1

N∑

q=1

ϑpϑ
∗
q

M∑

m=1

bm(p)bm(q)αm0





=
−2C0

π cosh2(k0h)
Re





N∑

p=1

N∑

q=1

∞∑

m=0

∞∑

n=0

νm0ν
∗
n0ϑpϑ

∗
qe

i(n−m)π

H
(1)
2m(k0rC)H

(1)∗
2n (k0rC)

∫ π
2

−π
2

dσ
[
e−ik0(Yp−Yq) sinσ cos 2mσ cos 2nσ

]}
(A.2.6)

which must be satisfied by the computed gate amplitudes ϑj for j = 1, ..., N . Note that

this identity is expressed in terms of the global coordinates.

The identity (A.2.6) is the basis of the error defined later in (5.3.19) for checking the

numerical accuracy shown in figure 5.7.
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A.3 Inclined gates

On the sea side on the far field surface x = X ∼ −∞,

ϕ = ϕD +
N∑

j=1

φ−
j ϑj

where ϕD is the diffraction potential due to the sum of the prescribed incident wave

ϕI =
−ig

ω

cosh [k0(z + h)]

cosh(k0h)
eik0x (A.3.7)

and the unknown reflected wave as in (4.4.25)

ϕR = µ0
cosh [k0(z + h)]

cosh k0h
e−ik0x (A.3.8)

Note that the evanescent modes are excluded for large X and the complex coefficient µ0

must be found by the 2-D HFEM. On the other hand the normalized radiation potential

φ+
j due to the unit motion of jth gate is given by (4.3.16). Keeping only the propagating

mode, we get

φ−
j =

M∑

m=0

µj
m0 cos

mπy

a

cosh [k0(z + h)]

cosh(k0h)
e−iαm0x

where

αm0 =

√
k2

0 − (
mπ

a
)2

and M is the maximum m for real αm0. Thus,

∂φ−
j

∂x
=

M∑

m=0

−iαm0µ
j
m0 cos

mπy

a

cosh [k0(z + h)]

cosh(k0h)
e−iαm0x

Unlike vertical gates the coefficients µm0 must be found numerically by 3-D HFEM. We

can now calculate for x = X the total potential,

ϕ =
−ig

ω

cosh [k0(z + h)]

cosh(k0h)
eik0x + µ0e

−ik0x cosh [k0(z + h)]

cosh k0h

+
N∑

j=1

ϑj

{
M∑

m=0

µj
m0 cos

mπy

a

cosh [k0(z + h)]

cosh(k0h)
e−iαm0x

}

and

ϕx
∗ =

k0g

ω

cosh [k0(z + h)]

cosh(k0h)
e−ik0x + ik0µ

∗
0e

ik0x cosh [k0(z + h)]

cosh k0h

+
N∑

j=1

ϑ∗
j

{
M∑

m=0

iαm0µ
j∗
m0 cos

mπy

a

cosh [k0(z + h)]

cosh(k0h)
eiαm0x

}
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Figure A.2: Global coordinate system on lagoon side

The total energy influx across x = X due to diffraction and radiation on the Adriatic

side is

∫ a

0

∫ 0

−h
Im{ϕϕx

∗} dy dz =
C0

cosh2(k0h)
Im

{
k0a

g

ω
µ∗

0e
2ik0x + k0a

g

ω
µ0e

−2ik0x

+
N∑

j=1

ϑ∗
jk0a

g

ω
µj∗

00e
2ik0x +

N∑

j=1

ϑjk0a
g

ω
µj

00e
−2ik0x

− ik0a
g2

ω2
+ iak0µ0µ

∗
0 +

N∑

j=1

ϑ∗
j iak0µ0µ

j∗
00

+
N∑

j=1

ϑjiak0µ
∗
0µ

j
00 +

N∑

p=1

N∑

q=1

ϑpϑ
∗
q

M∑

m=0

µp
m0µ

q∗
m0iαm0

a

εm





=
C0

cosh2(k0h)
Im

{
−ik0a

g2

ω2
+ iak0µ0µ

∗
0

+ 2iIm





N∑

j=1

ϑ∗
j iak0µ0µ

j∗
00



+

N∑

p=1

N∑

q=1

ϑpϑ
∗
q

M∑

m=0

µp
m0µ

q∗
m0iαm0

a

εm





=
C0

cosh2(k0h)
Re



−k0a

g2

ω2
+ ak0µ0µ

∗
0 +

N∑

j=1

2ϑ∗
jak0µ0µ

j∗
00

+
N∑

p=1

N∑

q=1

ϑpϑ
∗
q

M∑

m=0

µp
m0µ

q∗
m0αm0

a

εm





Some terms have disappeared due to either the orthogonality of cos mπy
a

or being pure

real.

On the lagoon side, it is now more convenient to use only the global coordinate

system as shown in figure A.3. Therefore, the far field solution for potential due to
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the motion of one generic gate is the series expansion (3.3.18). We emphasize that for

different gate, the series coefficients νmn are different. On the large semi-circle with

r = R, we exclude evanescent modes with imaginary kn(n = 1, 2, ...). The potential due

to the oscillation of gate j is

φ+
j =

∞∑

m=0

νj
m0

cosh [k0(z + h)]

cosh(k0h)

H
(1)
2m(k0r)

H
(1)
2m(k0rC)

cos 2mσ (A.3.9)

Therefore,

∂φ+
j

∂r
=

∞∑

m=0

νj
m0

cosh [k0(z + h)]

cosh(k0h)

H
(1)′

2m (k0r)

H
(1)
2m(k0rC)

k0 cos 2mσ

for gate j and

ϕ+ϕ+
r
∗

=
N∑

p=1

N∑

q=1

ϑpφpϑ
∗
q

∂φq

∂r

∗

=
cosh2 [k0(z + h)]

cosh2(k0h)

N∑

p=1

N∑

q=1

ϑpϑ
∗
q

∞∑

m=0

νp
m0

H
(1)
2m(k0rC)

∞∑

n=0

νq∗
n0

H
(1)∗
2n (k0rC)

[
H

(1)
2m(k0r) cos 2mσH

(1)′∗
2n (k0r)k0 cos 2nσ

]

for all gates. The total energy outflux is

∫ π
2

0

∫ 0

−h
Im{ϕ+ϕ+

r
∗}Rdσdz = Im





k0C0R

cosh2(k0h)

N∑

p=1

N∑

q=1

∞∑

m=0

νp
m0ν

q∗
m0ϑpϑ

∗
q

H
(1)
2m(k0r)H

(1)′∗
2m (k0r)

H
(1)
2m(k0rC)H

(1)∗
2m (k0rC)

∫ π
2

0
(cos 2mσ)2 dσ





=
πk0C0R

2 cosh2(k0h)
Im





N∑

p=1

N∑

q=1

∞∑

m=0

νp
m0ν

q∗
m0ϑpϑ

∗
q

H
(1)
2m(k0r)H

(1)′∗
2m (k0r)

εmH
(1)
2m(k0rC)H

(1)∗
2m (k0rC)



 (A.3.10)

For large argument, we replace the Hankel function by its asymptotic form

H(1)
n (x) '

√
2

πx
ei[x−(n+ 1

2)
π
2 ]

and

H(1)′

n (x) ' i

√
2

πx
ei[x−(n+ 1

2)
π
2 ] + O


1

x

√
1

x




Therefore

H
(1)
2m(k0r) =

√
2

πk0r
ei(k0r−mπ−π

4
)
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and

H
(1)′∗
2m (k0r) = −i

√
2

πk0r
e−i(k0r−mπ−π

4
)

Substituting these into (A.3.10), we get

∫ π
2

0

∫ 0

−h
Im{ϕ+ϕ+

r
∗}Rdσdz

=
C0

cosh2(k0h)
Im





N∑

p=1

N∑

q=1

∞∑

m=0

−iνp
m0ν

q∗
m0ϑpϑ

∗
q

εmH
(1)
2m(k0rC)H

(1)∗
2m (k0rC)





=
C0

cosh2(k0h)
Re





N∑

p=1

N∑

q=1

∞∑

m=0

−νp
m0ν

q∗
m0ϑpϑ

∗
q

εmH
(1)
2m(k0rC)H

(1)∗
2m (k0rC)





Finally, the energy conservation identity reads

C0

cosh2(k0h)
Re



ak0µ0µ

∗
0 − k0a

g2

ω2
+

N∑

j=1

2ϑ∗
jak0µ0µ

j∗
00 +

N∑

p=1

N∑

q=1

ϑpϑ
∗
q

M∑

m=0

νp
m0ν

q∗
m0αm0

a

εm





=
C0

cosh2(k0h)
Re





N∑

p=1

N∑

q=1

∞∑

m=0

−νp
m0ν

q∗
m0ϑpϑ

∗
q

εmH
(1)
2m(k0rC)H

(1)∗
2m (k0rC)





which must be satisfied by the numerically computed coefficients µmo and amplitudes

ϑp. This will be used for checking the correctness and accuracy of the numerical com-

putations by our 2-D and 3-D schemes of HFEM.
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