C0	13/09/13	Emissione per approvazione	DV	DL	LM
RE\	/ISIONE	DESCRIZIONE	EL.	CON.	APP.

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI MAGISTRATO ALLE ACQUE

NUOVI INTERVENTI PER LA SALVAGUARDIA DI VENEZIA

LEGGE N. 798 DEL 29-11-1984 CONVENZIONE REP. N. 7191 DEL 04-10-1991 ATTO ATTUATIVO REP. 8492 DEL 30-03-2011 (PROGETTAZIONE)

INTERVENTI ALLE BOCCHE LAGUNARI PER LA REGOLAZIONE DEI FLUSSI DI MAREA

CUP: D51B020000500H1 (PROGETTAZIONE)

PROGETTO ESECUTIVO

WBS: CH.I1.48

WBE: CH.I1.48.PE.09

BOCCA DI CHIOGGIA – PARATOIE E CONNETTORI PARATOIE VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO RELAZIONE DI CALCOLO

D. Varisco	D. Lesina	APPROVATO C. Malza
N. ELABORATO	CODICE FILE	DATA
MV078P-PE-CAR-2006-C0	MV078P-PE-CAR-2006-C0.doc	13 Settembre 2013

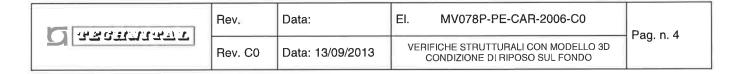
CONSORZIO "VENEZIA NUOVA"

OPERA PROTETTA AI SENSI DELLA LEGGE 22 APRILE 1941 N° 633 TUTTI I DIRITTI RISERVATI QUALSIASI RIPRO DUZIONE ED UTILIZZAZIONE NON AUTORIZZATE SARANNO PERSEGUITE A RIGORE DI LEGGE

Pag. n. 2

ARGICIAN T

INDICE


Data: 13/09/2013

Rev. C0

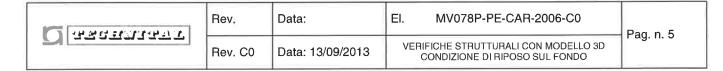
1.	OGG	4		
2.	RIFE	RIMENT	ΓΙ	5
	2.1.	Elaborat	i del progetto esecutivo	5
	2.2.	Normati	ve	5
3.	MAT	ERIALI		6
	3.1.	Caratter	istiche	6
	3.2.	Tension	i ammissibili	7
4.	SCH	EMATIZ	ZAZIONE DELLA PARATOIA	11
	4.1.	Descrizi	one della paratoia	11
	4.2.	Unità di	misura	12
	4.3.	Program	ma di calcolo	12
	4.4.	Sistema	di riferimento del modello	13
	4.5.	Sovra-sp	pessore di corrosione	16
	4.6.	Modello	della paratoia	17
	4.7.	Fasciam	i	21
			Fasciami esterni	21
			Fasciami interni (diaframmi longitudinali)	28
	4.8.	Rinforzi	ordinari	32
		4.8.1.		32
	4.0		Ferri a bulbo	34
		Squadre		38
			rinforzo fori	40
		Telai rin		42
			i ammortizzatori	48
		Vincoli		50
5.			PLICATI	52
	5.1.	Peso pro	-	52
		5.1.1.	Generalità	52
			Pesi distribuiti uniformemente Peso concentrato solo in alcune zone	54 58
	5.2.	Peso for		59
	5.2. 5.3.		ale considerato per la paratoia con fouling	60
	5.4.	Onda co	61	
			oni termiche	64
	J.J.	7 allazi	/III (VIIIIICIIC	UT

6.	COMBINAZIONI DI CARICO	65
7.	RISULTATI	66
	7.1. Verifiche tensionali	66
	7.2. Reazioni vincolari	68
	7.3. Deformazioni	69
	7.4. Spostamenti e rotazioni centri snodi	72
	7.5. Conclusioni	73
8,	IMMAGINI DEI RISULTATI	74
	8.1. Generalità	74
	8.2. Riposo sul fondo - Combinazione E.5a	75

1. OGGETTO E SCOPO

La presente relazione illustra le verifiche degli elementi strutturali della paratoia di Chioggia attraverso una schematizzazione tridimensionale ad elementi finiti, nella condizione di appoggio sul fondo con una pressione, sui fasciami che racchiudono la paratoia.

I criteri di calcolo e, la derivazione dei carichi applicati sono illustrati nelle relazioni:


• MV078P-PE-CAR-2000 Relazione tecnica generale

• MV078P-PE-CAR-2001 Verifiche strutturali – Carichi e criteri di progetto

Nella tabella seguente si riportano le combinazioni di carico analizzate.

Cond.	Descrizione	Carichi Agenti	Vincoli
E.5a	A riposo	Peso proprio paratoia allestita Peso fouling Sovrappressione onda corta	Cerniere + Appoggi elastici
E.5b	A riposo	Peso proprio paratoia allestita Peso fouling Sovrappressione onda corta Variazione termica uniforme su tutti i componenti +15°C	Cerniere + Appoggi elastici
E.5c	A riposo	Peso proprio paratoia allestita Peso fouling Sovrappressione onda corta Variazione termica uniforme su tutti i componenti -15°C	Cerniere + Appoggi elastici

TAB. 1.1 – COMBINAZIONI DI CARICO

2. RIFERIMENTI

2.1. Elaborati del progetto esecutivo

L'elenco dei documenti di progetto, nella revisione valida, è riportato nel documento:

• MV078P-PE-CZL-2001 Bocca di Chioggia - Paratoie e Connettori – Paratoie - Elenco elaborati

2.2. Normative

Le normative di riferimento per la progettazione sono:

per la scelta dei criteri di verifica, la definizione dei materiali e la schematizzazione base dei ferri a bulbo:

 NTC 2008 "Nuove Norme Tecniche per le Costruzioni" Decreto Ministero Infrastrutture del 14/01/2008

per i criteri di modellazione e di verifica:

 R.I.Na. "Guida relativa ai criteri per la verifica mediante calcolo diretto della robustezza strutturale dello scafo delle navi", 1992

per la definizione delle tensioni ammissibili e dei sovra-spessori di corrosione e, parzialmente, per la schematizzazione dei bulbi:

• R.I.Na. "Regolamento per la classificazione delle navi", 2013;

per la definizione delle tensioni ammissibili in funzione dello spessore delle lamiere:

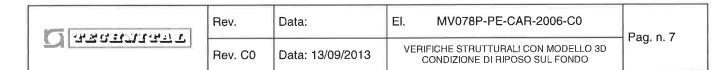
• UNI EN 10025-2:2005 "Prodotti laminati a caldo di acciai per impieghi strutturali - Parte 1: Condizioni tecniche generali di fornitura"

्र सम्बद्धसम्बद्धम् <u>र</u>	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag n 6
7 320333352	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	Pag. n. 6

3. MATERIALI

3.1. Caratteristiche

La paratoia è realizzata con struttura totalmente saldata utilizzando, in funzione della classe strutturale e dello spessore dei componenti, i seguenti materiali:


elementi	classe	spessore	materiale	norma
				UNI EN 10025-1
lamiere e piatti	a	>40 mm	S355K2	UNI EN 10025-2
				UNI EN 10164
		>20 mm		UNI EN 10025-1
lamiere e piatti	b	e	S275J2	
		≤40 mm		UNI EN 10025-2
lauriana miassi fami a hadha	b-c			UNI EN 10025-1
lamiere, piatti, ferri a bulbo, profilati, ecc.		≤20 mm	S275J0	
promati, ecc.	d ≈ e			UNI EN 10025-2
lamiana niatti mafilati aaa		≤16 mm	S235JR	UNI EN 10025-1
lamiere, piatti, profilati, ecc.	е	≥10 mm	3233JK	UNI EN 10025-2
tubi aria compressa	d	=	P235TR1	UNI EN 10216

TAB. 3.1 - DESIGNAZIONE DEI MATERIALI

con le seguenti caratteristiche di resistenza (limitatamente agli spessori utilizzati):

Acciaio		Tensione [Carico unitario	Tensione di Rottura fu (MPa) [Resistenza a trazione R _m]				
	t ≤ 16 mm	16 mm <t ≤<br="">40 mm</t>	40 mm < t ≤ 63 mm	100 mm < t ≤ 150 mm	150 mm < t ≤ 200 mm	3 mm <t ≤<br="">100 mm</t>	100 mm <t ≤ 250 mm</t
S355K2	is:	-	335	H)	285	470 ÷ 630	450 ÷ 600
S275J2	ye.	265	100	-:		410 ÷ 560	×
S275J0	275	265	=	# (C	*	410 ÷ 560	*
S235JR	235	721		140	9/	360 ÷ 510	¥
P235TR1	235	3		12 0	161	360 ÷ 500	9

TAB. 3.2 - CARATTERISTICHE DI RESISTENZA DEI MATERIALI

I requisiti completi per i materiali e la costruzione sono riportati nella specifica:

MV078P-PE-CAS-2001 Specifica Tecnica – Materiali, fabbricazione e controlli

Per tutti gli acciai strutturali vengono applicate le seguenti proprietà elastiche previste dalle norme:

 $E = 206000 \text{ N/mm}^2 \text{ modulo di elasticità}$

 $G = 80000 \text{ N/mm}^2 \mod \text{di taglio}$

v = 0.3 modulo di Poisson

 $\rho = 7850 \text{ kg/m}^3$ densità di massa

 $\alpha = 12 \cdot 10^{-6} \, {}^{\circ}\text{C}^{-1}$ coefficiente di espansione termica

3.2. Tensioni ammissibili

Le verifiche strutturali sono condotte con riferimento alla Guida e al Regolamento R.I.Na. citati, con ulteriori prescrizioni relative alle caratteristiche di resistenza, in ottemperanza alle indicazioni delle NTC 2008 e UNI EN 10025-2, come precisato nel documento MV078P-PE-CAR-2001.

La definizione delle tensioni ammissibili è riportata in:

• R.I.Na. "Guida relativa ai criteri per la verifica mediante calcolo diretto della robustezza strutturale dello scafo delle navi", 1992

Al paragrafo 4.2, la tensione ammissibile è definita dalla seguente espressione:

$$\sigma_{\text{amm}} = \frac{240}{\text{K h}}$$
 [N/mm²] $\tau_{\text{amm}} = \frac{\sigma_{\text{amm}}}{\sqrt{3}}$ [N/mm²]

dove:

i coefficienti di sicurezza h da assumere sono:

h = 1,25 per le situazioni di carico combinate

h = 1,33 per le condizioni di pressatura

h = 1,55 per le situazioni di carico in acqua tranquilla

i <u>coefficienti del materiale K</u> sono definiti nel Regolamento R.I.Na., Parte B, Cap. 4, Sez.1, Tabella 2, sotto riportata, in funzione della tensione minima di snervamento R_{eH} .

ReH (N/mm ²)	k
235	1
315	0,78
355	0,72
390	0,70

Per valori intermedi di R_{eH}, K può essere ottenuto per interpolazione lineare, pertanto nel progetto per S275 si considera:

S275
$$K = 0.89 = 1 - (1-0.78)*(315-275)/(315-235)$$

Le tensioni ammissibili base di confronto per i progetto risultano pertanto:

coeff. sicurezza		h =	1,25	h =	1,33	h =	1,55
ReH (N/mm ²)	k	σamm (N/mm²)	tamm (N/mm ²)	oamm (N/mm²)	τamm (N/mm²)	σamm (N/mm ²)	τamm (N/mm²)
275	0,89	216	125	203	117	174	100
355	0,72	267	154	251	145	215	124

TAB. 3.3 - TENSIONE AMMISSIBILE BASE IN ACCORDO A R.I.Na.

La tensione ammissibile deve risultare non inferiore alla tensione ideale calcolata con il criterio di von Mises in accordo alla seguente formula:

$$\sigma_{id} = \sqrt{0.5 \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 \right] + 3(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2)}$$

Poiché il criterio del R.I.Na. non tiene conto del decadimento delle caratteristiche del materiale in funzione dello spessore, il valore della σ_{amm} viene ridotto in proporzione al limite di snervamento riportato nel prospetto 7 della Norma UNI EN 10025-2:2005, che per i materiali di interesse indica:

<u>िकद्रवस्थातकर</u> ण	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag n Q	
O 330mmagra	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	Pag. n. 9	

Designazione	Carico unitario minimo di snervamento R _{eH} (N/mm²) in funzione dello spessore nominale (mm)								
acciaio	≤16	>16 ≤40	>40 ≤63	>63 ≤80	>80 ≤100	>100 ≤150	>150 ≤200		
S275J0,J2	275	265	255	245	235	225	215		
S355K2	355	345	335	325	315	295	285		

Tab. 3.4 - Tensione ammissibile in funzione dello spessore dell'elemento secondo UNI EN 10025-2:2005, prospetto 7

Le tensioni ammissibili di confronto risultano quindi come indicato nella seguente tabella.

	Tensioni ammissibili (N/mm²) in funzione dello spessore nominale (mm)									
Acciaio	h ≤16 >16 >40 >63 >80 >100 ≥ ≤40 ≤63 ≤80 ≤100 ≤150									
S275 J0,J2	1,25	216	208	200	192	184	177	169		
S355K2		267	259	252	244	237	222	214		
S275 J0,J2	1,33	203	195	188	181	173	166	159		
S355K2		251	244	237	229	222	208	201		
S275 J0,J2	1,55	174	168	161	155	149	142	136		
S355K2		215	209	203	197	191	179	173		

TAB. 3.5 - TENSIONE AMMISSIBILE IN FUNZIONE DELLO SPESSORE DELL'ELEMENTO

A titolo di esempio, la tensione ammissibile per la lamiera della paratia longitudinale di acciaio S355K2 e spessore 30 mm, per h = 1,55, risulta da:

$$\begin{split} \sigma_{amm} &= (R_{eH[30 \text{ mm}]}/R_{eH[16 \text{ mm}]})*240/(K*h) \\ &= (345/355)*240/(0,72*1,55) = 209 \text{ N/mm}^2 \end{split}$$

I coefficienti di sicurezza, da cui le relative tensioni di confronto, adottati per le successive verifiche, tenuto conto degli spessori effettivamente presenti nella struttura, sono riportati nella successiva tabella.

Coeff. sicurezza	Materiale			ssibili (N/n ssore nomi		- Combinazioni di carico		
h	Acciaio	≤16	>16 ≤40	>40 ≤63	>150 ≤200			
1 55	S275 J0,J2	174	168			condizioni di carico base:		
1,55	S355K2			203	173	a riposo sul fondo con e senza carico onda corta		

Tab. 3.6 - Coefficienti di sicurezza per le verifiche strutturali in condizioni di riposo sul fondo

्रिकदस्यातकच् <i>र</i>	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 11
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	rag. II. Ti

4. SCHEMATIZZAZIONE DELLA PARATOIA

4.1. Descrizione della paratoia

Le caratteristiche geometriche principali della paratoia sono:

• lunghezza totale	27,30	[m]
• lunghezza da asse cerniere	26,65	[m]
• larghezza massima	19,92	[m]
• larghezza in punta	19,86	[m]
• lunghezza rastremazione (dalla punta)	16,85	[m]
• altezza	5,00	[m]
• distanza asse cerniere da superficie superiore	0,80	[m]

La struttura è costituita da fasciami in lamiera supportati e irrigiditi da elementi strutturali secondari, detti correnti e realizzati con profilati a bulbo, sostenuti a loro volta da telai trasversali, detti ossature rinforzate, realizzati con travi composte e raccordate con squadre d'angolo.

Le travi rinforzate trasversali sono sostenute da tre linee di puntellatura longitudinali: due in corrispondenza degli elementi strutturali relativi alle cerniere, realizzate con una paratia forata, e una centrale realizzata con puntelli.

I fasciami frontale e posteriore sono irrigiditi e sostenuti da elementi di rinforzo verticali, realizzati con profili a bulbo, con le estremità collegate con squadre ai corrispondenti correnti superiore e inferiore.

I correnti dei fasciami laterali sono collegati con squadre al primo corrente verticale dei fasciami frontale e posteriore.

I correnti longitudinali e verticali sono disposti con un intervallo d'ossatura tipico di 625 mm.

I telai trasversali rinforzati e i relativi elementi di puntellatura sono disposti a intervalli di 2000/2500 mm.

I correnti non vengono interrotti in corrispondenza di ogni telaio trasversale, ma sono continui attraverso intagli, di geometria opportuna, nell'anima delle travi rinforzate mantenendo il collegamento con l'anima stessa.

Le paratie longitudinali laterali sono opportunamente rinforzate in corrispondenza dei fori per i perni dei gruppi cerniera-connettore e dei punti di aggancio dei dispositivi per il sollevamento della paratoia.

La paratoia è leggermente rastremata sui fianchi, da circa un terzo della lunghezza fino alla punta, mediante deviazione dei fasciami laterali, fino a un massimo di 30 mm per lato; l'entità della riduzione è irrilevante ai fini delle verifiche.

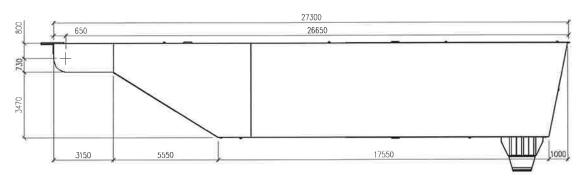
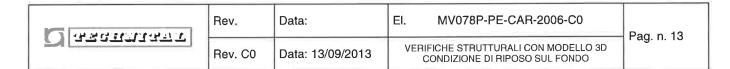


FIG. 4.1 – PARATOIA – VISTA LATERALE

4.2. Unità di misura

Per le unità di misura si è adottato il Sistema Internazionale.


4.3. Programma di calcolo

La paratoia è stata analizzata utilizzando il programma di calcolo Autodesk Simulation Mechanical

autore: Autodesk (ex ALGOR Inc.)

release: 2013

Autodesk Simulation Mechanical è un software package di Autodesk, per analisi a elementi finiti, di applicazione generale.

Il codice adottato è un programma commerciale di uso internazionale nel settore della progettazione meccanica e strutturale, certificato, sottoposto a continuo controllo e aggiornamento e oggetto di un forum pubblico degli utilizzatori.

L'affidabilità è stata anche verificata dal progettista attraverso l'uso costante nell'arco di circa 20 anni, in particolare per progetti di tipo navale.

Ulteriori informazioni sono riportate nel documento MV078P-PE-CAR-2001, in particolare riguardo ai metodi di calcolo delle sollecitazioni, convenzioni e caratteristiche degli elementi utilizzati.

4.4. Sistema di riferimento del modello

Il modello è descritto in un sistema di riferimento globale, nel quale sono riportate tutte le visualizzazioni insieme con la terna di riferimento globale.

Nelle figure seguenti è riportata la posizione del sistema di riferimento globale rispetto al quale sono forniti i risultati:

- asse X di simmetria trasversale delle paratoia
- asse Y longitudinale passante per il centro degli snodi
- asse Z verticale spiccato dall'intersezione di X con Y

I singoli elementi hanno il loro sistema di riferimento locale, che non è però utilizzato nella visualizzazione e nella restituzione dei risultati e che non viene pertanto descritto.

🛛 कडदस्यतकर	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 14
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 14

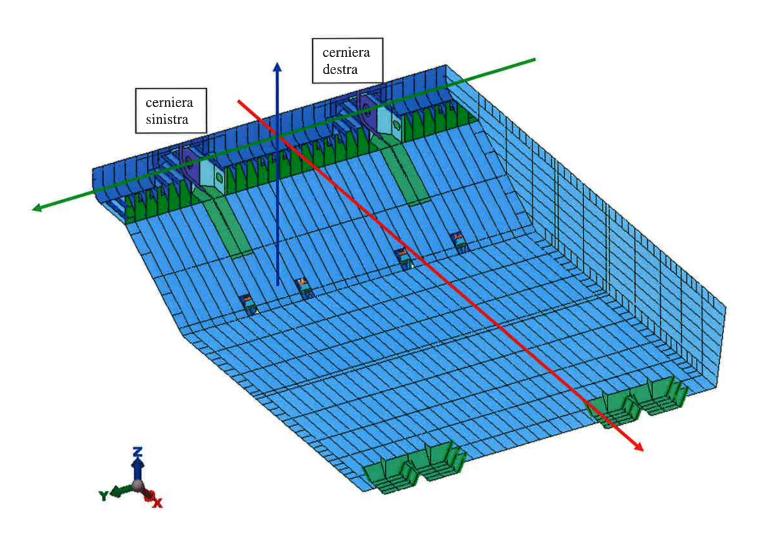


Fig. 4.2 – Posizione sistema di riferimento globale del modello vista 3D

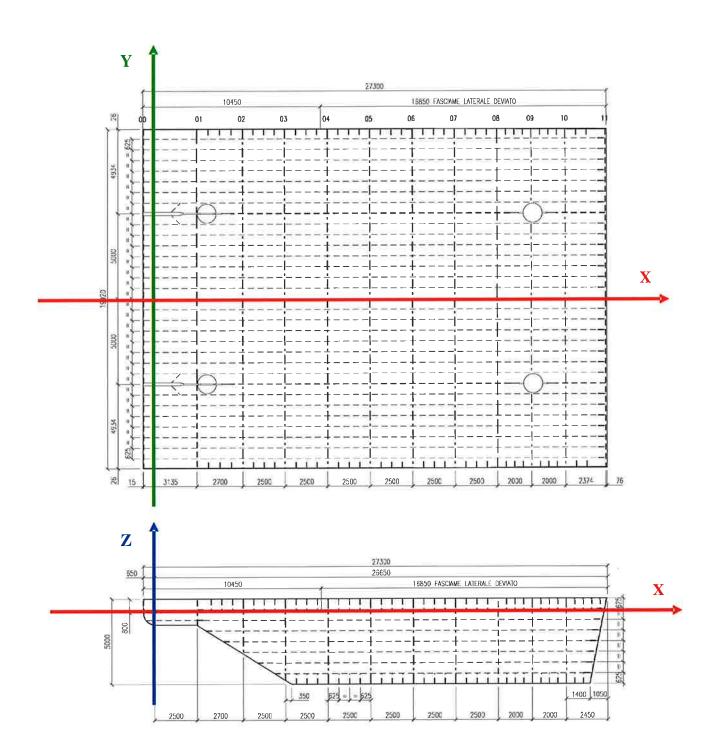
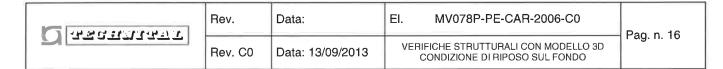



Fig. 4.3 – Posizione sistema di riferimento globale del modello in pianta e alzato

4.5. Sovra-spessore di corrosione

Le verifiche strutturali vengono eseguite al netto dei seguenti sovra-spessori di corrosione, da applicare su ogni lato di esposizione dell'elemento strutturale, con riferimento ai criteri del Registro Italiano Navale (R.I.Na.) riportati nel "Regolamento per la classificazione delle navi":

- esposizione lato esterno paratoia = 0.5 mm
- esposizione lato interno paratoia = 1.0 mm

I sovra-spessori di corrosione sono stabiliti con riferimento a R.I.Na., Pt B, Ch 4, sec 2, Table 2.

Per ogni elemento:


- lato esterno 0,5 mm, assimilabile a "Altri locali, Mare ed aria esterni"
- lato interno 1,0 mm, assimilabile a "Cisterne di zavorra"

Pertanto, nelle situazioni ricorrenti si ha:

- per la lamiera del fasciame esterno si assume una riduzione di 0.5+1.0 = 1.5 mm (una superficie esposta al mare una interna)
- per un piatto all'interno si assume una riduzione 1,0+1,0=2,0 mm (le superfici sono entrambe all'interno)
- per i ferri a bulbo si assume una riduzione di 1,0+1,0=2,0 mm (le superfici sono all'interno)
- per le lamiere della struttura di supporto parabordi si assume una riduzione di 0.5 + 0.5 = 1 mm (le superfici sono esposte al mare su entrambi i lati)

Nel modello tutti gli elementi sono schematizzati al netto del sovra-spessore di corrosione, mentre le densità adottate per i materiali di ogni elemento sono calcolate tenendo conto anche del peso corrispondente allo spessore nominale. Si vedano anche la tabella al successivo punto e le indicazioni nel capitolo 5.

Circa la rappresentazione dei sovra-spessori di corrosione, gli assi geometrici degli elementi netti (dedotti i sovra-spessori) sono disposti in corrispondenza degli allineamenti teorici della struttura, riportati nei disegni di progetto e nella figura precedente.

4.6. Modello della paratoia

La struttura è stata schematizzata con le seguenti tipologie di elemento:

- piastra
- trave
- elemento 3D o brick

Non sono utilizzati elementi a comportamento membranale.

La modellazione adottata è intermedia tra il 2° e il 3° livello di schematizzazione definiti nella Guida R.I.Na. ai par. 1.3.3 e 1.3.4.

La schematizzazione con gli elementi piastra è stata eseguita utilizzando quadrilateri o triangoli facendo in modo di rispettare il più possibile i seguenti limiti geometrici:

• elementi quadrilateri

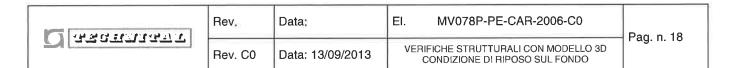
 $\frac{Lato\ maggiore}{Lato\ minore} \le 2$ (per un ridotto numero di elementi è consentito arrivare

fino a 4)

 $60^{\circ} \le angolo \le 120^{\circ}$

· elementi triangolari

 $30^{\circ} \le angolo \le 120^{\circ}$


Le dimensioni di ingombro della paratoia sono:

• lunghezza totale 27,30 m

larghezza 19,92 m

• altezza 5.00m

L'elemento piastra (plate) base ha, in genere, 4 nodi e forma quadrata con lato da 156,25 mm, che è un sottomultiplo degli interassi ricorrenti (ad esempio, essendo tipicamente 625 mm l'interasse tra i bulbi, il fasciame tra due bulbi contigui è modellato da 4 elementi piastra).

In situazioni particolari di raccordo fra vari elementi strutturali, per continuità nel modello a elementi finiti, tali dimensioni possono diminuire, oppure l'elemento può diventare triangolare o trapezio.

Gli elementi tridimensionali schematizzanti la lamiera da 60 mm hanno, in genere, 8 nodi e forma di parallelepipedo con base quadrata di lato pari ad un terzo dell'elemento piastra base e spessore 29 mm.

Gli elementi tridimensionali schematizzanti la lamiera da 180 mm hanno, in genere, 8 nodi e forma di parallelepipedo con base quadrata pari all'elemento piastra base e spessore 89 mm.

Le lamiere di grande spessore sono pertanto modellate con due elementi nello spessore, tenendo conto della riduzione dello spessore per corrosione.

Tutti gli elementi plate sono stati considerati aventi cerniere con asse nel piano dell'elemento in corrispondenza dell'unione con gli elementi brick, cioè non sono presenti incastri tra elementi plate e gli elementi brick.

Ulteriori dettagli sono forniti nel documento MV078P-PE-CAR-2001.

Il modello è composto da:

•	118.459	nodi
-	エエロ・オンフ	HOUL

• 16.309 elementi trave

• 106.162 elementi piastra

• 12.572 elementi tridimensionali

Nella tabella seguente si riporta la sintesi degli elementi utilizzati per ogni componente della paratoia, indicando la funzione nel complesso strutturale, il tipo e lo spessore, mentre nei successivi paragrafi si riportano precisazioni sugli elementi e sulla schematizzazione adottata e i dettagli del modello per ogni tipologia di elemento in base alla sua funzione.

Rev. C0

Rev. Data: El. MV078P-PE-CAR-2006-C0

Data: 13/09/2013

VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO Pag. n. 19

Funzione	posizione	tipo	elemento Algor	spessore nominale (mm)	riduzione per corrosione (mm)
Fasciami esterni	superiore	lamiera	piastra	8-10-11	1,5
	inferiore	lamiera	piastra	8-10-11	1,5
	laterale	lamiera	piastra	8-10-11	1,5
	posteriore	lamiera	piastra	8-15	1,5
	anteriore	lamiera	piastra	11	1,5
	ossatura 01	lamiera	piastra	8-20	1,5
	inferiore sotto pinna	lamiera	piastra	20	1,5
Fasciami interni (paratie longitudinali)	tipici (15 mm solo per irrigidimenti pinne)	lamiera	piastra	10-11	2
	irrigidimenti pinne	lamiera	piastra	20	2
	zone recessi twist lock	lamiera	piastra	30	2
	zone recessi twist lock	lamiera	brick	60	2
	pinna	lamiera	brick	180	2
Rinforzi ordinari	paratie longitudinali e diaframma telaio 09	piatti	piastra	11	2
	piatti fasciame posteriore	piatti	piastra	12-15	1,5
	fasciami esterni	ferri a bulbo - anima ferri a bulbo - bulbo	piastra trave	max Hp 300x11	2
Squadre	spigoli	piatti	piastra	10	2
Piatti rinforzo fori	paratie longitudinali	piatti	trave	11	2
Telai rinforzati	ossatura 02	lamiera piattabande	piastra trave	8-10 11	2
	ossatura 03	lamiera piattabande	piastra trave	8-10-12 13	2
	ossatura 04	lamiera piattabande	piastra trave	8-10 13	2
	ossatura 05	lamiera piattabande	piastra trave	8-10 13	2
	ossatura 06	lamiera piattabande	piastra trave	8-11 13	2
	ossatura 07	lamiera piattabande	piastra trave	8-11 13	2
	ossatura 08	lamiera piattabande	piastra trave	8-11 13	2
	ossatura 09	lamiera piattabande	piastra trave	8-11 13	2
	ossatura 10	lamiera piattabande	piastra trave	8-11-13 13	2
	diaframma centrale	lamiera piattabande	piastra trave	10-11 11-13	2
Telaio ammortizzatori	ossatura 10	Iamiera	piastra	10	1
		piattabande	trave	10	1
		lamiera	piastra	20	1

Tab. 4.1 - Elementi tipici, spessori nominali e riduzione per corrosione

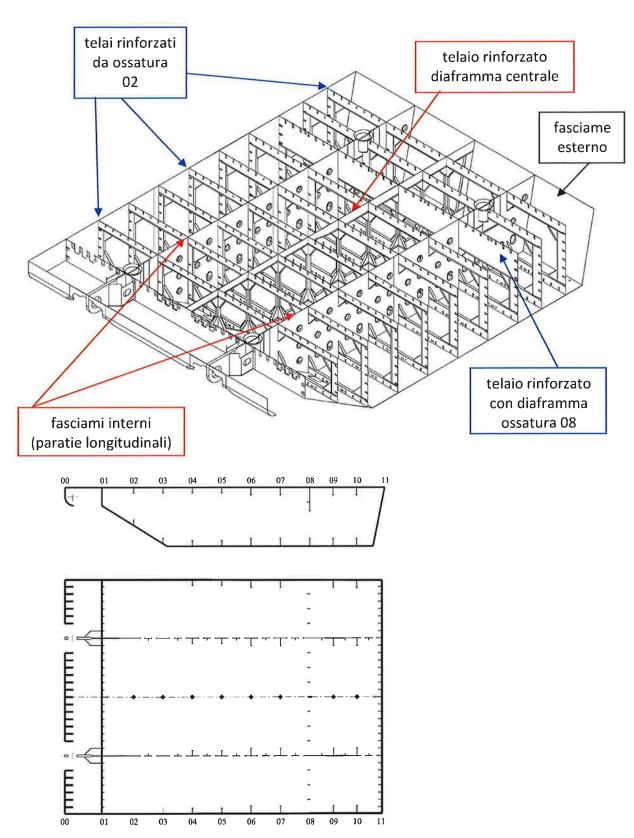


FIG. 4.4 - ELEMENTI PARATOIA E NUMERAZIONE OSSATURE

ARCHAIAT	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 21
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ay. 11. 21

4.7. Fasciami

4.7.1. Fasciami esterni

I fasciami esterni sono stati schematizzati con elementi piastra aventi uno spessore 8 mm, 10 mm, 11 mm, 15 mm (solo per i rinforzi locali del fasciame posteriore) o 20 mm (solo per i rinforzi locali sotto le pinne), ridotto di 1,5 mm quale sovraspessore di corrosione.

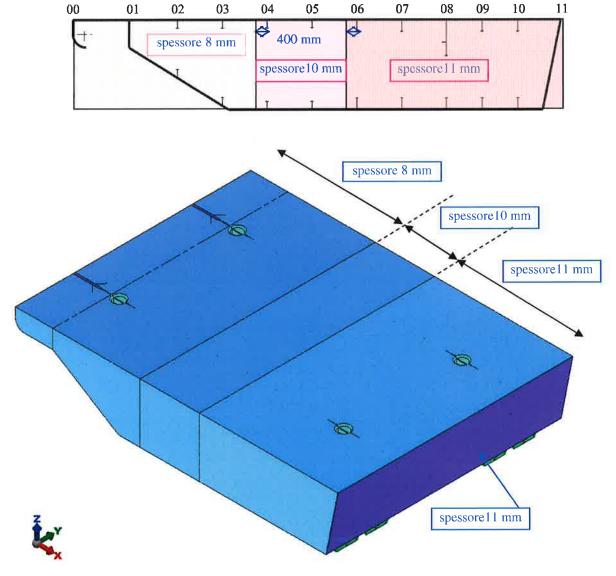


FIG. 4.5 – FASCIAMI ESTERNI: VISTA LATERALE E SUPERIORE

• कडव्यक्रक्रक्रक्रक्रक्रक्रक्रक्रक्रक्रक्रक्रक	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	- Pag. n. 22
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	

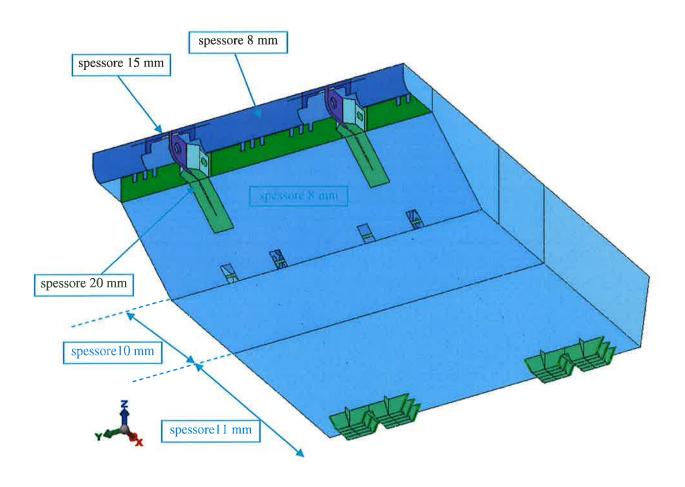


Fig. 4.6 – Fasciami esterni: vista inferiore

Ascaratave	Rev.	Data:	El. MV078P-PE-CAR-2006-C0	Pag. n. 23
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 20

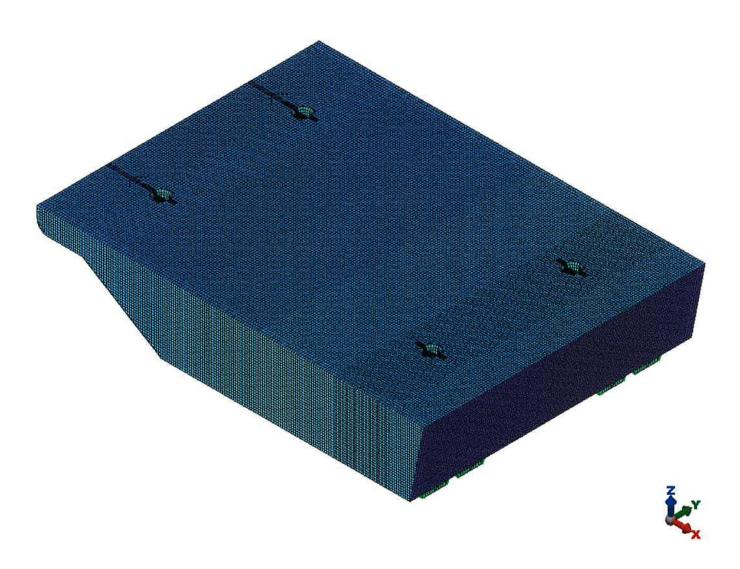


FIG. 4.7 – FASCIAMI ESTERNI: DETTAGLIO MESH

☐ कडकस्याकचर	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag n 24
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	Pag. n. 24

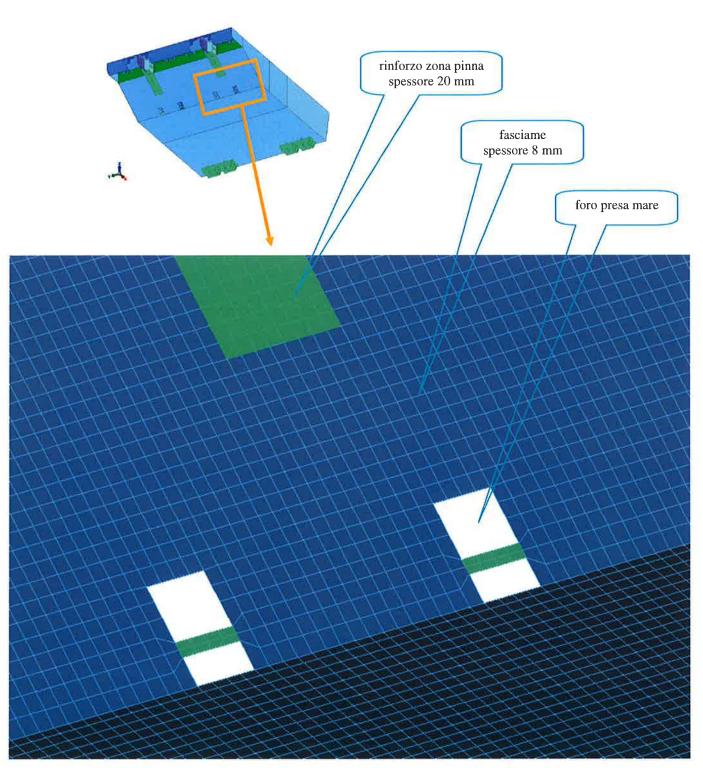


FIG. 4.8 – FASCIAMI ESTERNI: DETTAGLIO PRESE MARE VISTE DAL BASSO

Q ARGICAAVV	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 25
O ASSESSATATE	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	ray. 11. 23

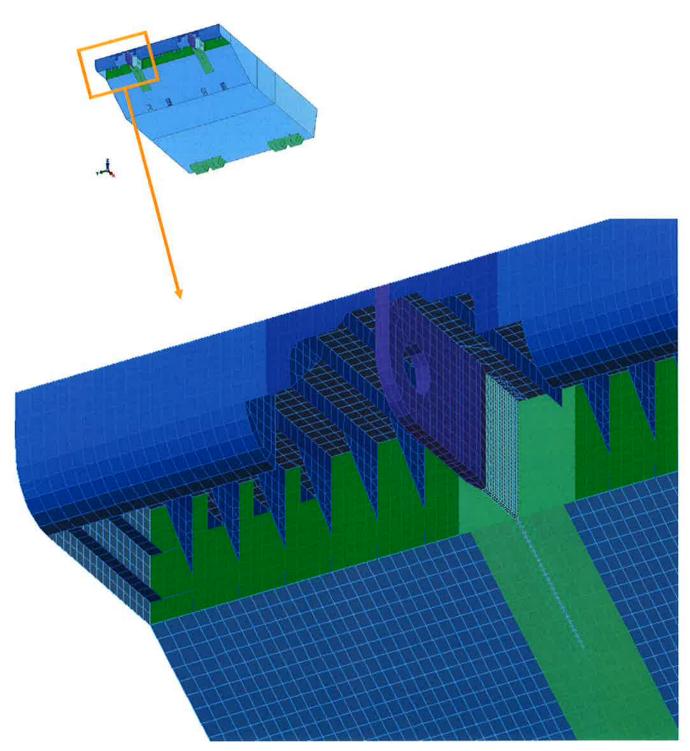


Fig. 4.9 – Fasciami esterni: dettaglio sfoghi aria visti dal basso

Ascanage v	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 26
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 20

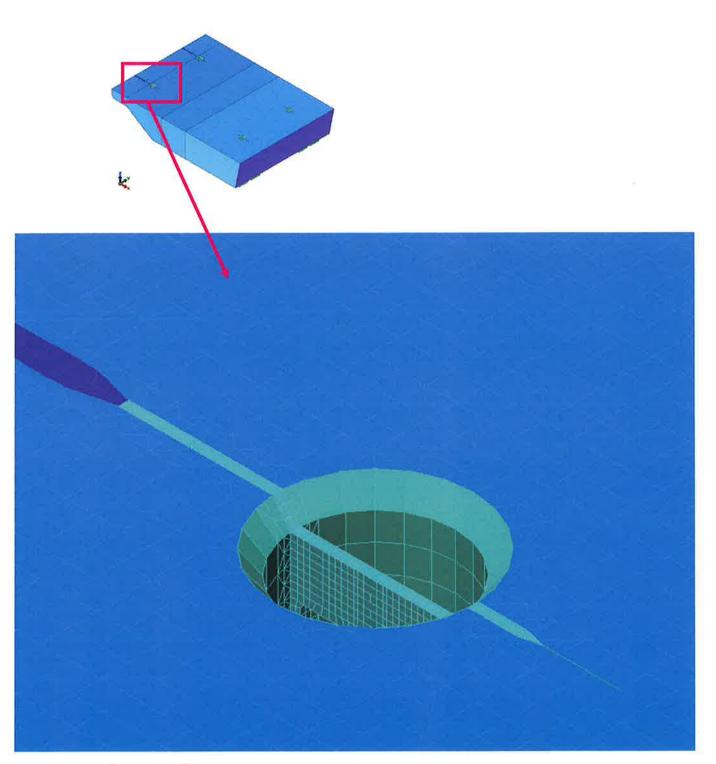
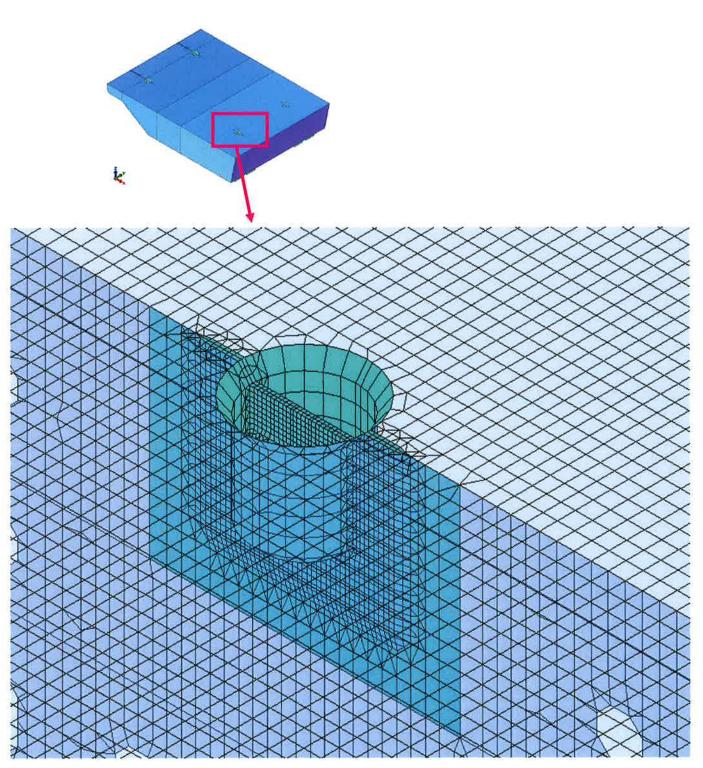



FIG. 4.10 – FASCIAMI ESTERNI: DETTAGLIO CAVA TWIST LOCK POSTERIORE

ि क्ष्रवस्थातकर	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 27
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 27

 $Fig.\ 4.11-Fasciami\ esterni:\ dettaglio\ cava\ twist\ lock\ anteriore$

4.7.2. <u>Fasciami interni (diaframmi longitudinali)</u>

I fasciami interni sono stati schematizzati con elementi piastra nelle zone in cui lo spessore è pari a 10, 11, 15, 20 e 30 mm (colore blu nella figura seguente), e con elementi tridimensionali nelle zone in cui lo spessore è 60 e 180 mm (in colore verde), raccordati agli elementi piastra. Lo spessore degli elementi è pari a quello indicato sui disegni, ridotto di 2,0 mm quale sovra-spessore di corrosione.

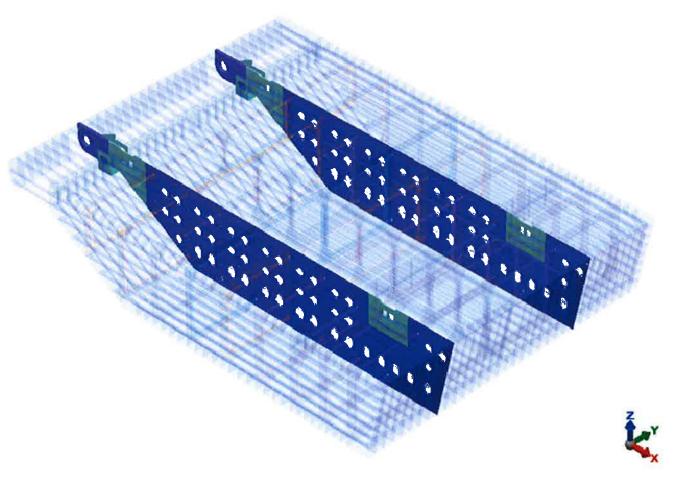


FIG. 4.12 – FASCIAMI INTERNI

📿 कडदस्यतकरू	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag n 20
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	Pag. n. 29

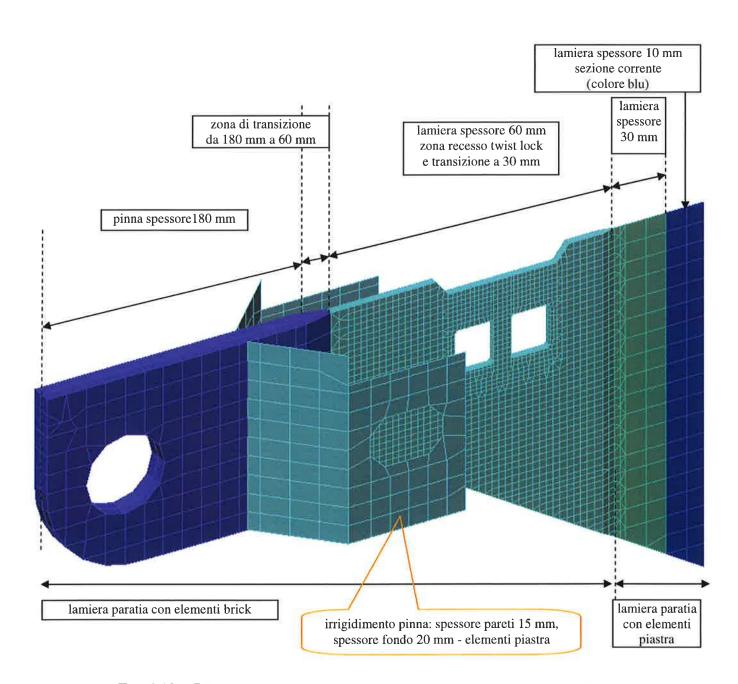


Fig. 4.13 – Paratie longitudinali: dettaglio pinna e zona recesso twist lock posteriore

	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 30
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	ray. 11. 30

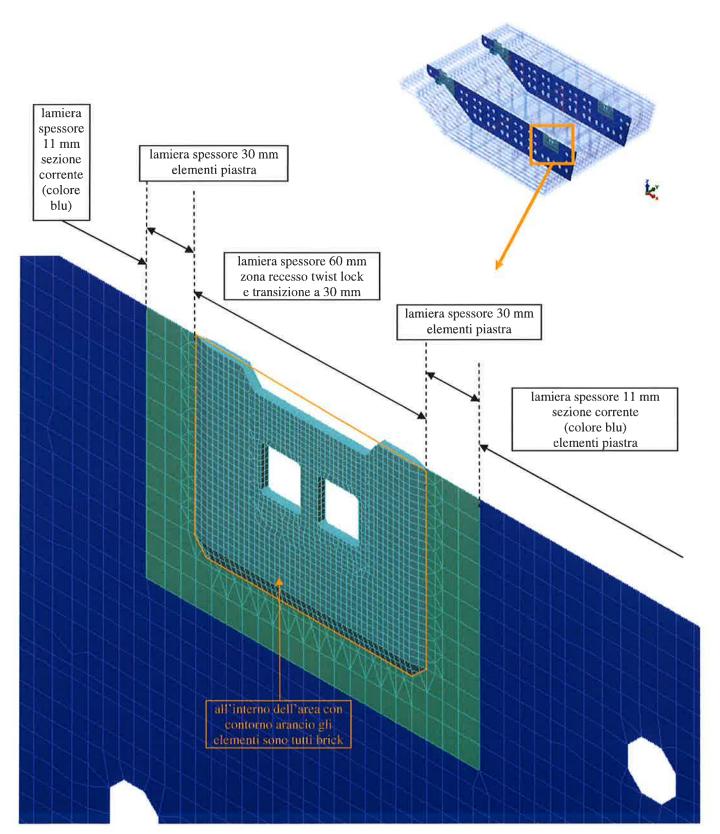
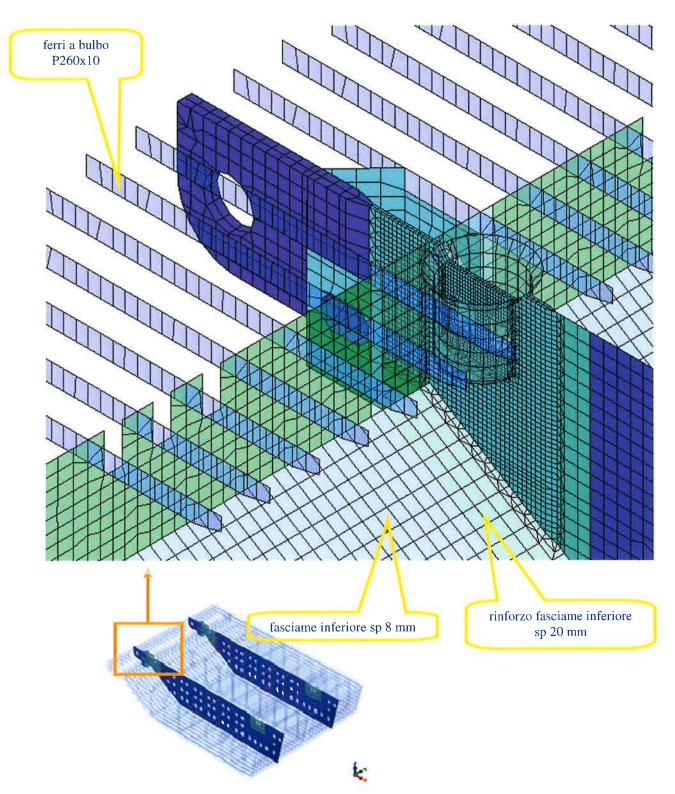



Fig. 4.14 – Paratie Longitudinali: dettaglio zona recessi twist lock anteriore

Ascrander 7	Rev	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 31
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	r ag. 11. 31

 $Fig.\ 4.15-Fasciami\ interni:\ dettaglio\ rinforzi\ zona\ cerniere$

4.8. Rinforzi ordinari

4.8.1. Piatti

I piatti di rinforzo dei diaframmi longitudinali e del diaframma verticale dell'ossatura 08 sono stati schematizzati con elementi piastra di altezza pari al piatto e di spessore lordo 11 mm, ridotto di 2,0 mm quale sovra-spessore di corrosione.

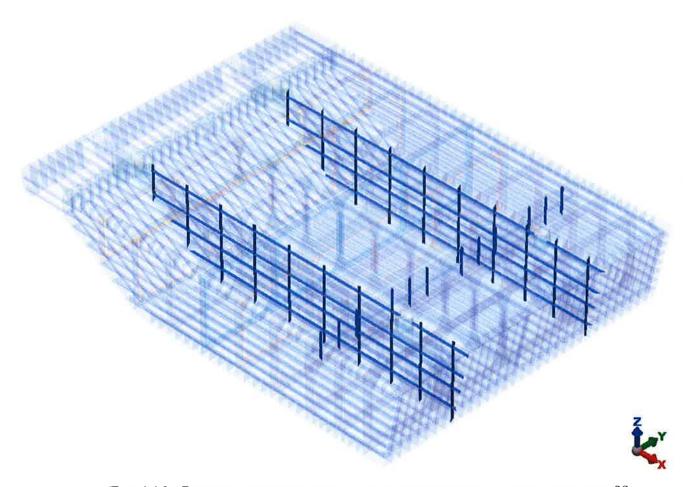


Fig. 4.16 – Piatti di rinforzo su paratie longitudinali e diaframma oss. 08

	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 33
○ सिक्स देश सम्बद्ध ।	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	ray. 11. 55

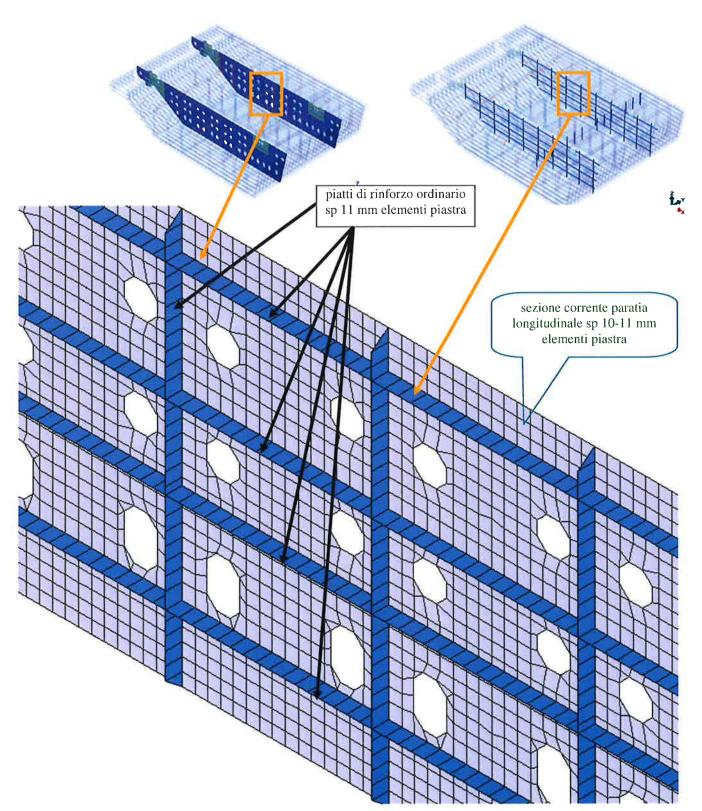


FIG. 4.17 – PIATTI DI RINFORZO: DETTAGLIO MESH SU PARATIE LONGITUDINALI

Q ASCRALAT	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 34
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 54

4.8.2. Ferri a bulbo

Le sezioni dei ferri a bulbo riportate sui disegni vengono trasformate, secondo un criterio di equivalenza R.I.Na., in angolari con spessori di anima e piattabanda ridotti di 2,0 mm quale sovra-spessore di corrosione.

L'angolare così ottenuto viene schematizzato attraverso un elemento piastra, simulante l'anima del ferro, ed un elemento trave, simulante il bulbo, attraverso la trasformazione riportata in Fig. 4.18.

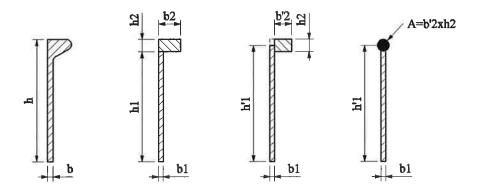


FIG. 4.18 – CONVERSIONE FERRI A BULBO

dove:

h x b = dimensioni bulbo.

Trasformazione secondo il metodo R.I.Na. (ref. Parte B, Capitolo 4, Sezione 3, Par. 3.1.2) con:

b1 = b - 2

h1 + h2 = h

Per avere il centro dell'elemento trave (ala del profilo) nella stessa posizione del suo baricentro reale, si esegue un'ulteriore trasformazione dell'angolare equivalente, aumentando l'altezza dell'anima e modificando la larghezza del bulbo in modo che l'area della sezione composta rimanga invariata. Tale ulteriore trasformazione permette una schematizzazione ad elementi finiti più simile alla realtà rispetto a quello che si otterrebbe considerando l'elemento trave in corrispondenza del punto più alto (h1) dell'elemento plate costituente l'anima dell'angolare composto.

$$h'1 = h1 + \frac{h2}{2}$$

$$b'2 = b2 - \frac{b1}{2}$$

L'angolare così ottenuto viene schematizzato nel seguente modo:

- elemento piastra avente altezza pari ad h'1 e spessore b1;
- elemento trave con le caratteristiche geometriche di un rettangolo avente per lati b'2 e h2.

In Tab. 4.2 vengono riportati i dati dei ferri a bulbo considerati.

Bulbo	h1	b1	h2	b2	h'1	b'2
180x8	162.4	6.0	17.6	30.9	171.20	27.87
200x9	180.3	7.0	19.7	34.9	190.15	31.35
220x10	198.1	8.0	21.9	38.8	209.05	34.84
260x10	233.7	8.0	26.3	44.8	246.85	40.81
300x11	269.4	9.0	30.6	51.8	284.70	47.28

TAB. 4.2 – CONVERSIONE BULBI

I ferri a bulbo sono:

- P180x8 sui fasciami dall'ossatura 00 alla 04 circa, con la sola esclusione del fasciame superioriore, che è rinforzato nella zona tra l'ossatura 00 e l'ossatura 02 circa con ferri P260x10, come indicato in figura;
- P200x9 sui fasciami dall'ossatura 04 circa all'ossatura 06 circa;
- P200x10 sui fasciami dall'ossatura 06 circa all'ossatura 11;
- P300x11 sul fasciame anteriore;

Asstrataver	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Dog n 26
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D	Pag. n. 36

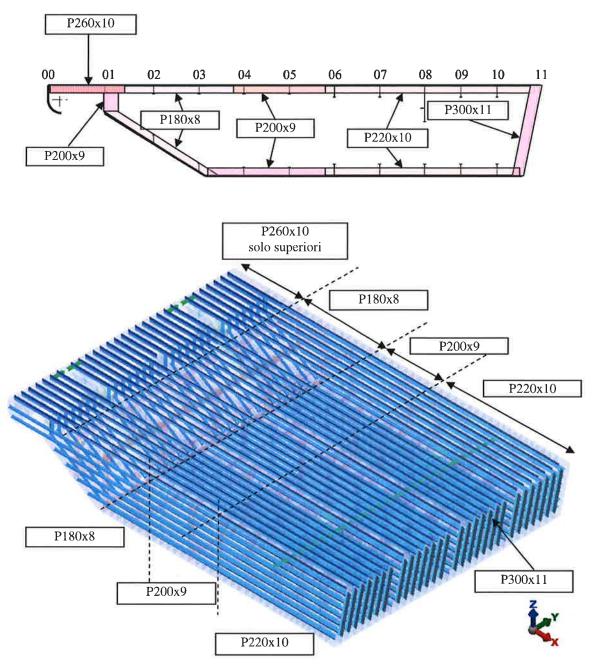


Fig. 4.19 – Ferri a bulbo

तिक्रवस्थातकगर	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag n 27
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	Pag. n. 37

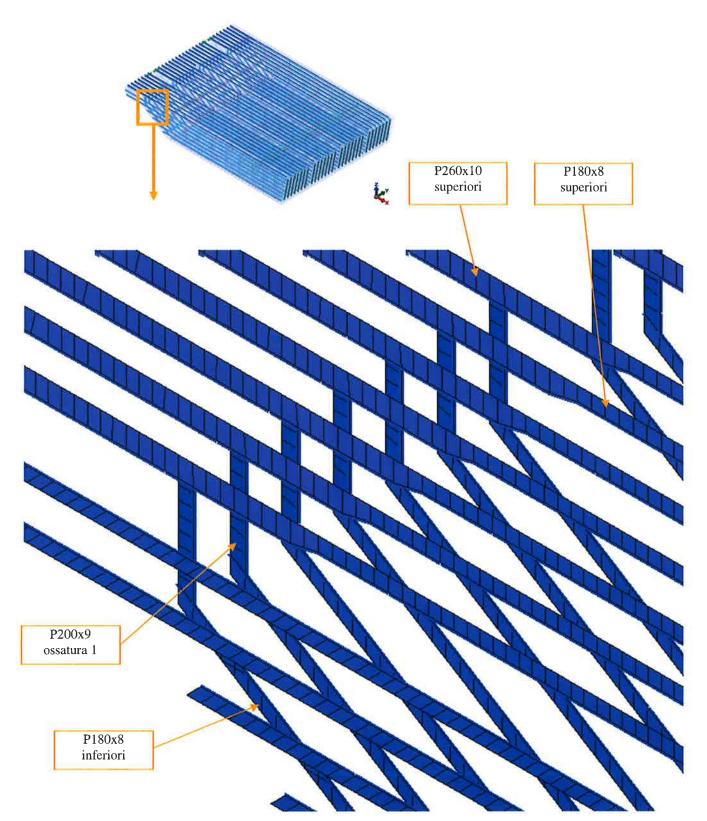


Fig. 4.20 – Ferri a bulbo: Dettaglio Mesh (zona posteriore alta)

4.9. Squadre

Le squadre sono state schematizzate con elementi piastra aventi spessore pari a 10 mm ridotto di 2,0 mm quale sovra-spessore di corrosione.

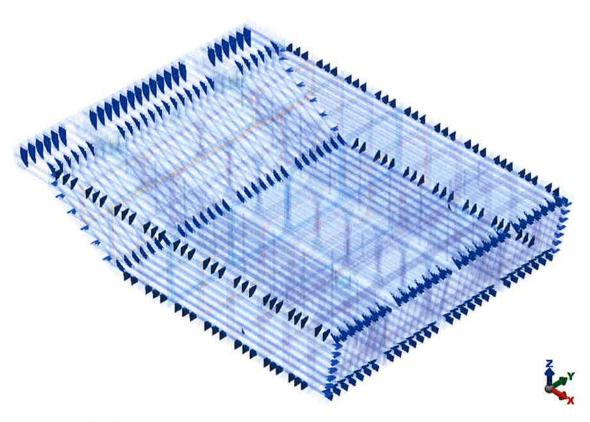


FIG. 4.21-SQUADRE

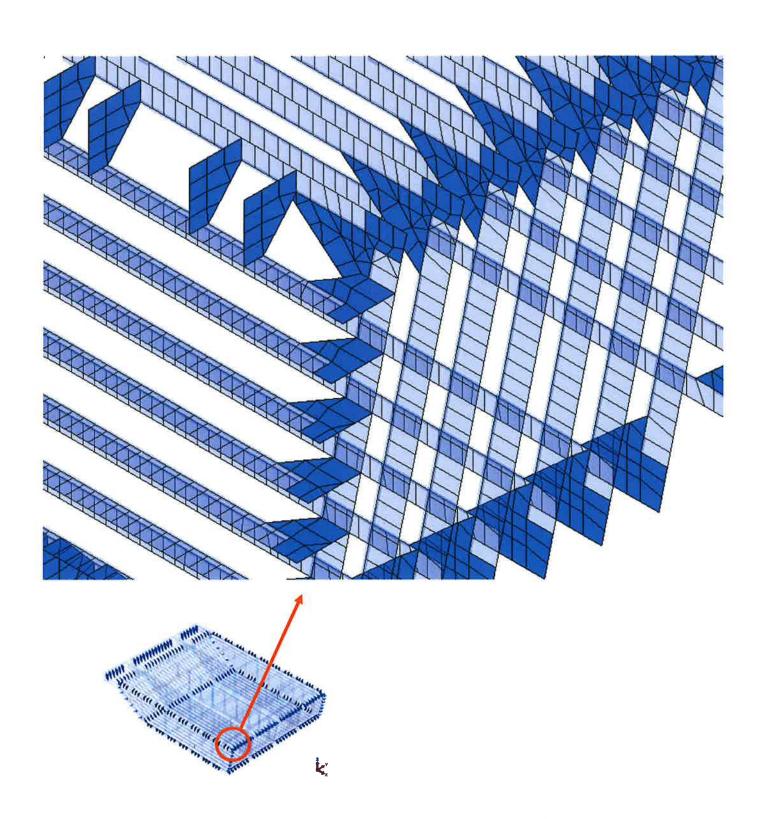


Fig. 4.22 – Squadre: Dettaglio Mesh (zona anteriore alta)

Ascanagas v	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag n 40
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	Pag. n. 40

4.10. Piatti di rinforzo fori

I piatti di rinforzo dei fori dei diaframmi longitudinali sono stati schematizzati con elementi trave aventi la stessa larghezza del piatto indicato sul disegno, spessore lordo 11 mm, ridotto di 2,0 mm per tener conto dei sovra-spessori di corrosione.

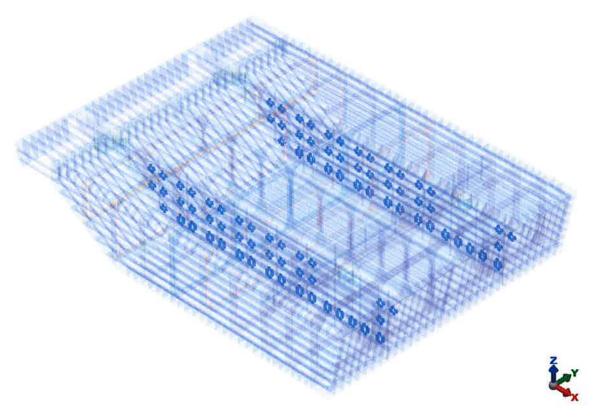


FIG. 4.23 – PIATTI RINFORZO FORI

Q ascantant	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 41
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 41

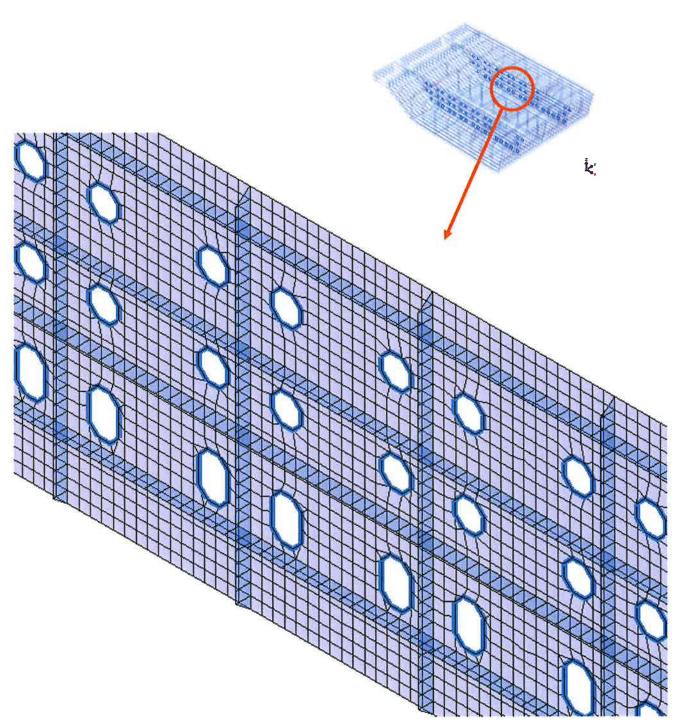



Fig. 4.24 – Piatti Rinforzo fori: dettagli

4.11. Telai rinforzati

Le anime delle travi rinforzate vengono schematizzate con elementi piastra, in numero di almeno tre sull'altezza.

Le piattabande delle travi rinforzate vengono schematizzate come travi.

Per tener conto dei sovra-spessori di corrosione gli spessori delle anime e delle piattabande delle travi rinforzate, usati nelle verifiche, sono quelli a disegno diminuiti di 2,0 mm.

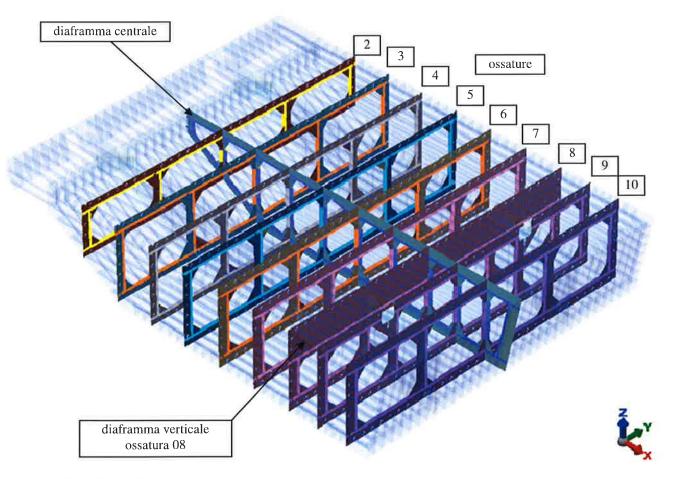


FIG. 4.25 – TELAI RINFORZATI

्री <u>कद्रदशक्षकक</u> र	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 43
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	

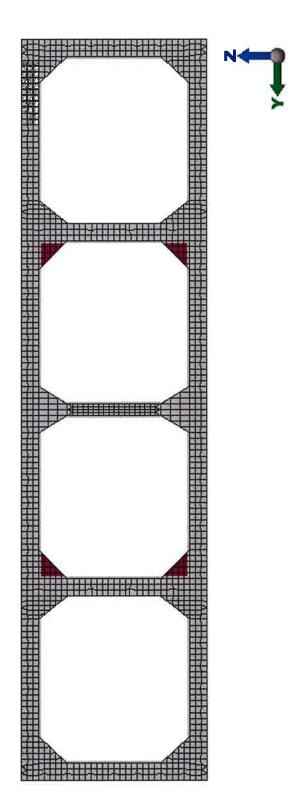
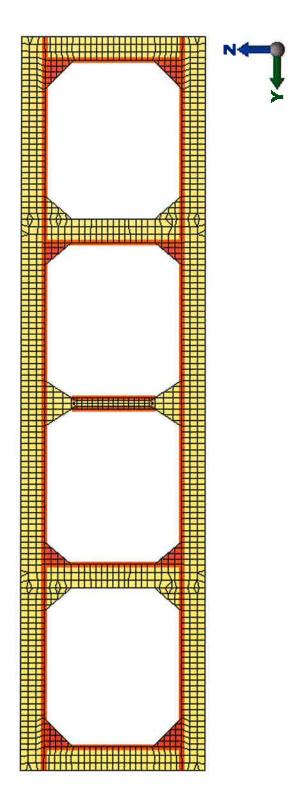



Fig. 4.26 – Telai rinforzati 2, 3, 4, 5: altezza anime 460 mm

27447V	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 44
23325	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	ray. 11. 44

🔰 पष्टदसः

Fig. 4.27 – Telai rinforzati 6, 7, 10: altezza anime 640 mm

Q Aschalato	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	- Pag. n. 45
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	

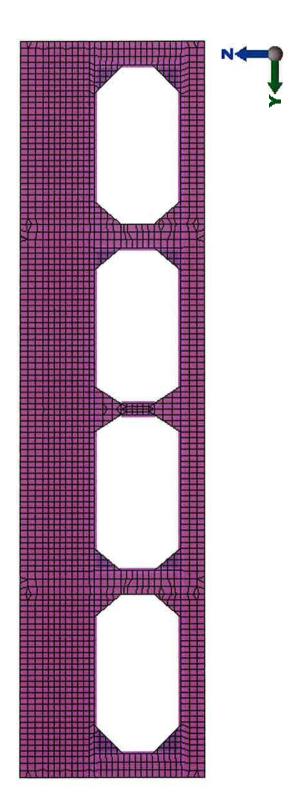


Fig. 4.28 – Telaio rinforzato 8: diaframa verticale

Teedstoneenv	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Bog n 46	
O ASPENIATE	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D	Pag. n. 46	

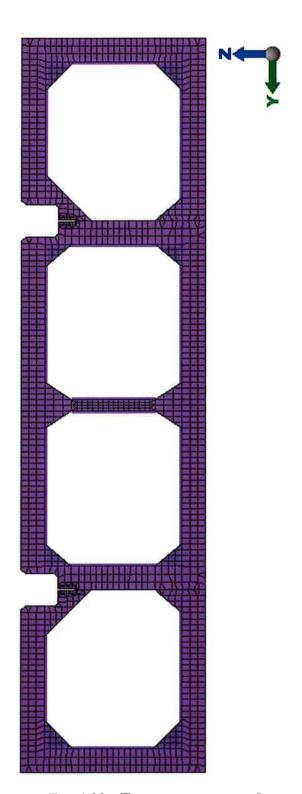


Fig. 4.29 – Telaio rinforzato 9: altezza anime 640 mm

तिक्रवस्त्रातस्य	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 47
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUI FONDO	ray. 11. 47

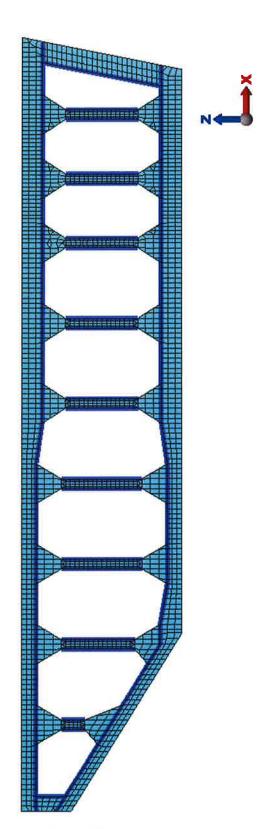


FIG. 4.30 – TELAI RINFORZATI: DIAFRAMMA CENTRALE

4.12. Supporti ammortizzatori

I telai che supportano gli ammortizzatori sono stati schematizzati con elementi piastra aventi spessore lordo 10 mm o 20 mm, pari a quello indicato sui disegni, ridotto di 1,0 mm quale sovra-spessore di corrosione.

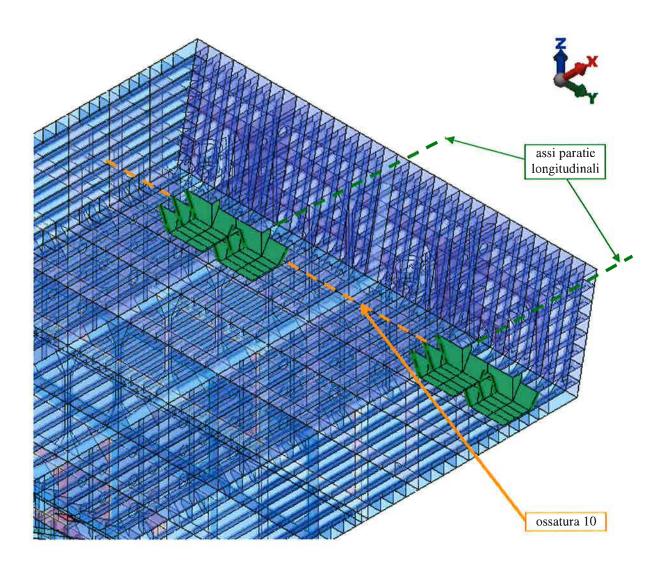
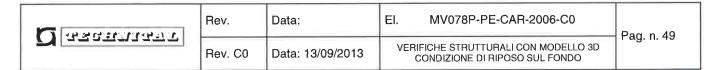



FIG. 4.31 - SUPPORTI AMMORTIZZATORI

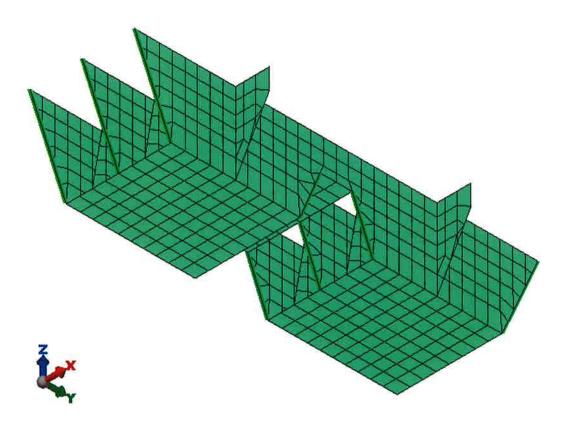


Fig. 4.32 - Supporti ammortizzatori: dettagli

Le piattabande di irrigidimento delle squadre dei supporti degli ammortizzatori sono state schematizzate con elementi trave aventi la stessa larghezza del piatto indicato sul disegno e spessore lordo 10 mm, ridotto di 1,0 mm per tener conto dei sovra-spessori di corrosione.

तिक्रवस्थातसगर	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 50
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 30



FIG. 4.33 - SUPPORTI AMMORTIZZATORI: PIATTABANDE RINFORZO SQUADRE

4.13. Vincoli

Per vincolare il modello è stato creato, in corrispondenza delle cerniere, un elemento tridimensionale simulante il perno. Questo elemento è stato vincolato alle estremità dell'asse alle traslazioni in X e Z. Inoltre è stato bloccato anche alle traslazioni in Y il perno di una sola cerniera.

Per simulare l'appoggio sugli appoggi elastici il telaio di supporto è stato vincolato in corrispondenza dell'interfaccia con gli appoggi elastici con vincoli elastici alla traslazione Z, assegnando a ogni gruppo di vincoli simulanti un ammortizzatore una costante elastica pari a 5000 kN/m.

तिक्रवस्त्रातक्तरः	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 51
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	ay. II. 31

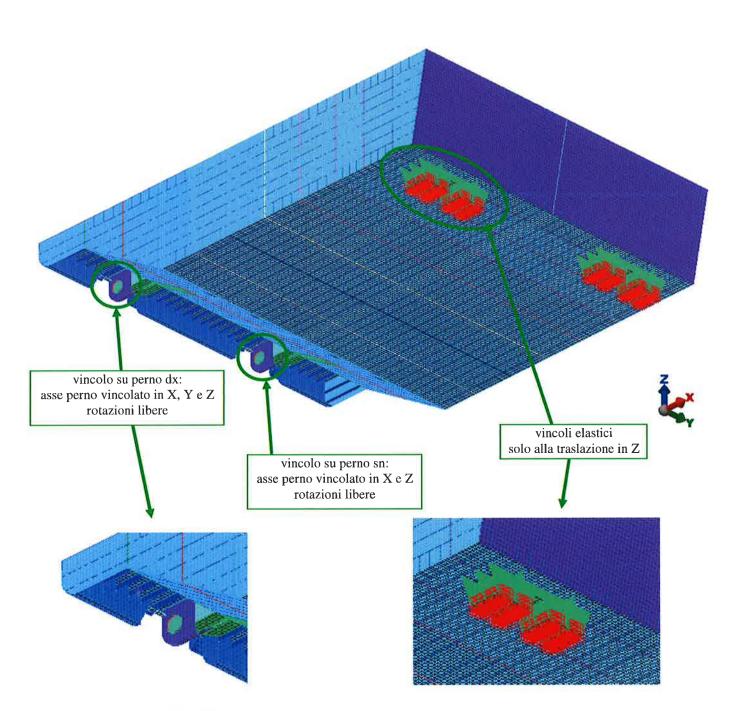
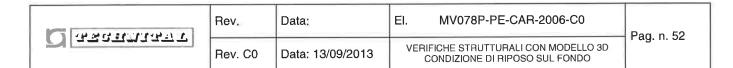



FIG. 4.34 – VINCOLI PARATOIA

5. CARICHI APPLICATI

5.1. Peso proprio

5.1.1. Generalità

Sulla paratoia agiscono i seguenti tipi di carico:

- Peso proprio allestita
- Peso fouling
- · Pressione acqua
- Variazioni termiche

Per ogni carico si stima da calcolo l'entità da considerare e si confronta e si ricava poi dal modello il carico effettivamente assegnato: i due risultati vengono confrontati in tabelle, in cui si indicano:

- l'entità del carico
- LCG = Longitudinale Centro di Gravità (coordinata X);
- VCG = Verticale Centro di Gravità (coordinata Z).

Le coordinate del CoG (Centro di Gravità) sono riferite al sistema globale, con origine sulla mezzeria dell'asse congiungente i centri delle due cerniere (ref. 4.4).

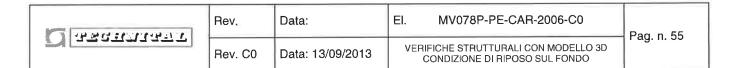
I pesi riportati in tabella sono valutati a disegno (struttura, anodi, tubature e loro supporti, supporti ammortizzatori) oppure stimati (pittura, ammortizzatori, tenute parziali, strumentazione).

D	Peso	LCG	VCG
Descrizione	(N)	(m)	(m)
Struttura			
Acciaio a spessore lordo	2.358.855	14,392	-1,325
Supporti ammortizzatori	52.196	24,193	-4,817
sub totale	2.411.051	14,604	-1,401
Saldature 2%	48.221	14,604	-1,401
Margine 5%	122.964	14,604	-1,401
TOTALE STRUTTURA	2.582.236	14,604	-1,401
Allestimenti			
Tubature, supporti e altri allestimenti	76.315	14,078	-1,780
Anodi e loro supporti	29.033	15,138	-1,236
Pittura	17.398	14,219	-1,379
Appoggi elastici (ammortizzatori)	42.330	24,175	-5,547
Tenute parziali (alette di gomma)	34.875	0,586	0,740
Strumentazione	5.101	5,100	-1,200
sub totale	205.052	13,806	-2,004
Margine 5%	10.253	13,806	-2,004
TOTALE ALLESTIMENTI	215.305	13,806	-2,004
TOTALE PESO PARATOIA (calcolato)	2.797.541	14,543	-1,447

Tab. 5.1 - Peso proprio paratola

Il peso viene distinto in "uniforme" quando distribuito su tutte le superfici della paratoia (struttura della paratoia, anodi e loro supporti, pittura e strumentazione) e in "concentrato solo in alcune zone" quando relativo a elementi o aree specifiche (tubature, supporti e altri allestimenti, ammortizzatori, tenute parziali).

○ कडदसयाकर ा	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag n 54
	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	- Pag. n. 54


Descrizione	Pesi unifo	ormemente distri	buito	Pesi c	oncentrati in zo	ne
Peso Paratoia (calcolato)	Peso (N)	LCG (m)	VCG (m)	Peso (N)	LCG (m)	VCG (m)
Struttura						
Acciaio a spessore lordo	2.358.855	14,392	-1,325			
Supporti ammortizzatori	52.196	24,193	-4,817			
sub totale	2.411.051	14,604	-1,401			
Saldature 2%	48.221	14,604	-1,401			
Margine 5%	122.964	14,604	-1,401			
TOTALE STRUTTURA	2.582.236	14,604	-1,401			
Allestimenti						
Tubature, supporti e altri allestimenti				76.315	14,078	-1,780
Anodi e loro supporti	29.033	15,138	-1,236			
Pittura	17.398	14,219	-1,379			
Appoggi elastici (ammortizzatori)				42.330	24,175	-5,547
Tenute parziali (alette di gomma)				34.875	0,586	0,740
Strumentazione	5.101	5,100	-1,200			
sub totale	51.532	13,834	-1,281	153.520	13,797	-2,246
Margine 5%	2.577	13,834	-1,281	7.676	13,797	-2,246
TOTALE ALLESTIMENTI	54.109	13,834	-1,281	161.196	13,797	-2,246
TOTALE PESO PARATOIA (calcolato)	2.636.345	14,588	-1,398	161.196	13,797	-2,246

Tab. 5.2 - Peso proprio paratoia – Pesi uniformemente distribuiti e carichi concentrati in zone

5.1.2. Pesi distribuiti uniformemente

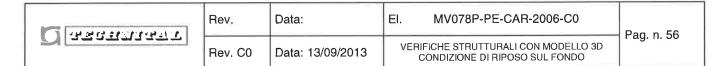
I pesi uniformemente distribuiti sono:

- peso struttura acciaio
- anodi e loro supporti
- pittura
- strumentazione

I <u>pesi strutturali</u> riportati in tabella sono calcolati a disegno sulla base dello spessore nominale degli elementi, cioè incluso il sovra-spessore di corrosione. Essi includono anche i supporti degli ammortizzatori.

Relativamente agli <u>anodi</u>, si tratta di oltre 300 elementi sulle superfici interne + 24 elementi sulle esterne, disposti in modo circa uniforme e con un peso modesto (in totale circa 1% rispetto al peso della paratoia): tenuto conto della loro disposizione (distribuiti su tutte le superfici della paratoia) e dell'entità del loro peso (anche singolarmente), il loro carico è stato uniformemente distribuito.

La <u>pittura</u> riveste una superficie totale di circa 5.853 m², cui si applica un peso unitario di vernice di circa 3 N/m²


La <u>strumentazione</u> è un carico modestissimo, dovuto a pochi elementi distribuiti all'interno della paratoia, che viene considerato uniformemente ripartito.

Questi pesi sono stati inseriti nel modello modificando il peso specifico degli elementi in modo da poter tenere conto di quanto segue:

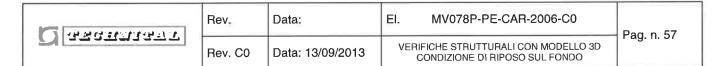
- gli elementi usati nel modello sono al netto dei sovra-spessori di corrosione;
- i ferri a bulbo sono stati convertiti in angolari;
- il peso della struttura, utilizzato per trovare le posizioni di equilibrio, corrisponde al peso degli elementi a spessore lordo (nominale) e include le saldature e il margine;
- il peso dell'allestimento include il margine.

Il peso uniforme viene calcolato con i seguenti passi:

• si assegna ai singoli elementi la densità corrispondente allo spessore nominale dell'elemento (in pratica per le lamiere si moltiplica la densità dell'acciaio di 7850 kg/m³ per il rapporto tra lo spessore lordo e lo spessore netto);

 si moltiplica la densità ottenuta per ogni elemento per il rapporto tra il totale dei carichi considerati uniformemente distribuiti e il peso della sola struttura con spessori nominali.

Nella tabella in cui si riportano le densità specifiche si distingue pertanto la densità assegnata in funzione del sovra-spessore di corrosione.


Sovra- spessore (mm)	Spessore lordo (mm)	Spessore netto (mm)	Densità equiv. spessore lordo (kg/m³)	Peso lamiere / Peso totale	Densità applicata (kg/m³)
I	10	9	8.722,22	1,093442	9.537,24
1	20	19	8.263,16	1,093442	9.035,28
1,5	8	6,5	9.661,54	1,093442	10.564,33
1,5	9	7,5	9.420,00	1,093442	10.300,22
1,5	10	8,5	9.235,29	1,093442	10.098,26
1,5	11	9,5	9.089,47	1,093442	9.938,81
1,5	12	10,5	8.971,43	1,093442	9.809,74
1,5	13	11,5	8.873,91	1,093442	9.703,11
1,5	14	12,5	8.792,00	1,093442	9.613,54
1,5	15	13,5	8.722,22	1,093442	9.537,24
1,5	20	18,5	8.486,49	1,093442	9.279,48
2	8	6	10.466,67	1,093442	11.444,69
2	9	7	10.092,86	1,093442	11.035,95
2	10	8	9.812,50	1,093442	10.729,40
2	11	9	9.594,44	1,093442	10.490,97
2	12	10	9.420,00	1,093442	10.300,22
2	13	11	9.277,27	1,093442	10.144,16
2	14	12	9.158,33	1,093442	10.014,11
2	15	13	9.057,69	1,093442	9.904,06
2	16	14	8.971,43	1,093442	9.809,74
2	20	18	8.722,22	1,093442	9.537,24
2	25	23	8.532,61	1,093442	9.329,91
2	30	28	8.410,71	1,093442	9.196,63
2	40	38	8.263,16	1,093442	9.035,28
2	60	58	8.120,69	1,093442	8.879,50
2	80	78	8.051,28	1,093442	8.803,61
2	180	178	7.938,20	1,093442	8.679,96

TAB. 5.3 - CALCOLO DELLE DENSITÀ CORRISPONDENTI A PESO UNIFORMEMENTE DISTRIBUITO PER LE LAMIERE

A titolo di esempio si consideri una lamiera da 15 mm di spessore lordo e 13 mm di spessore netto (sovra-spessore di corrosione 15 mm -13 mm = 2 mm).

La densità equivalente per l'elemento a spessore ridotto è:

 $7850 * 15/13 = 9.057,69 \text{ kg/m}^3$

La densità totale applicata è:

9.057,69 * 1,093442 = 9.904,06

dove il termine 1,093442 è il rapporto tra i pesi uniformemente distribuiti totali da applicare e il peso strutturale lordo (escluse saldature e margini). Infatti è pari a:

2.636.345 / 2.411.051 = 1,093442

Applicando l'accelerazione di gravità si ottiene il peso totale dei carichi uniformemente distribuiti imposti. La valutazione dei pesi è effettuata automaticamente attraverso il modello.

Poiché il modello è stato costruito con la paratoia orizzontale, i vettori dei pesi sono stati ruotati di caso in caso per tener conto che la paratoia lavora con angoli differenti in ogni condizione.

La definizione della densità permette di valutare, dove richiesto, le forze di inerzia dovute a velocità e accelerazione.

Nella successiva tabella vengono riportati i valori delle densità per gli elementi trave rappresentanti i bulbi dei rinforzi ordinari, calcolate in modo analogo, tenendo conto del sovra-spessore di corrosione di 2 mm.

Bulbo (trave)	Densità applicata (kg/m³)
180x8	9.044,44
200x9	8.951,11
220x10	9.152,48
260x10	9.104,13
300x11	9.155,33

Tab. 5.4 – Densità elementi trave dei bulbi

Pag. n. 58

Il totale dei pesi distribuiti uniformemente risultante è:

Descrizione Proprio Paratoia	Peso (N)	LCG (m)	VCG (m)
Totale modello (pesi uniformemente distribuiti)	2.607.651	14,551	-1,393
Totale calcolato (pesi uniformemente distribuiti)	2.636.345	14,588	-1,398

Tab. 5.5 – Peso distribuito uniformemente

5.1.3. Peso concentrato solo in alcune zone

I pesi concentrati in alcune zone sono:

- tubature, supporti e altri allestimenti
- appoggi elastici
- tenute parziali

Il peso delle tubature è stato inserito nel modello come carico suddiviso sulle piattabande delle travi rinforzate che li sostengono, distribuendo la quota parte di ogni trave sulle piattabande per una larghezza pari alla larghezza dei tubi.

Il peso degli appoggi elastici è stato invece inserito come forze concentrate nei nodi in corrispondenza della piattabanda del telaio di supporto.

Il peso delle tenute parziali è stato inserito come carico distribuito sugli spigoli lato mare e lato laguna del fasciame superiore.

Anche tutti questi pesi sono stati incrementati del margine.

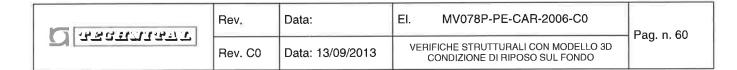
Poiché il modello è stato costruito con la paratoia orizzontale, i vettori dei pesi sono stati ruotati di caso in caso per tener conto che la paratoia lavora con angoli differenti in ogni condizione.

Descrizione Peso Paratoia	Peso (N)	LCG (m)	VCG (m)
Totale modello (pesi concentrati)	161.195	13,869	-2,706
Totale calcolato (pesi concentrati)	161.196	13,797	-2,246

TAB. 5.6 – PESI CONCENTRATI IN ZONE

5.2. Peso fouling

Il peso del fouling è stato inserito nel modello modificando il peso specifico degli elementi costituenti i fasciami esterni tenendo conto della diversa distribuzione del fouling (ref. MV078P-PE-CAR-2000) fra superfici superiori, inferiori e laterali.


SUPERFICIE	Peso unitario (kN/m²)	area (m²)	Peso fouling (kN)
estradosso	0,5	552,8	276
intradosso	0,2	338,5	68
fronte	0,1	100,8	10
fianchi	0,1	373,0	37
retro	0,1	324.1	32
supporti ammortizzatori	0,1	118,7	12
TOTALE		1.807,9	436

TAB. 5.7 – PESO DEL FOULING SULLAPARATOIA (CALCOLATO)

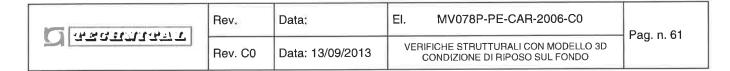
Il peso del fouling è stato inserito nel modello modificando la densità degli elementi costituenti i fasciami interessati, come riportato nella successiva tabella.

Spessore lordo (mm)	Densità applicata (kg/m³)
Fasciame inferiore	
10,00	12.326,30
11,00	12.131,68
Fasciame superiore	
8,00	17.366,77
10,00	16.600,59
11,00	16.338,47
Fasciame laterale	
8,00	12.553,15
10,00	11.999,33
11,00	11.809,87
15,00	11.332,70
20,00	11.026,41
Supporti ammortizzatori	
10,00	11.332,70
20,00	10.736,24

Tab. 5.8 – Densità fasciami con fouling

Il confronto tra pesi calcolati e pesi modellati è riportato nella successiva tabella.

Fouling	Peso (N)	LCG (m)	VCG (m)
Totale modello (fouling)	435.500	14,837	-0,550
Totale calcolato (fouling)	435.900	13,143	-0,465


TAB. 5.9 – PESO FOULING

5.3. Peso totale considerato per la paratoia con fouling

Nella successiva tabella viene riportato, come verifica, il confronto fra i valori di peso e baricentro calcolati e quelli derivati dal modello ad elementi finiti: il modello descrive bene la paratoia con uno scostamento massimo inferiore al 1% per il peso e poco superiore al 2% per la posizione del baricentro.

D D D 4.		CALCOLATI		DA MODELLO			
Descrizione Peso Paratoia	Peso (N)	LCG (m)	VCG (m)	Peso (N)	LCG (m)	VCG (m)	
Pesi uniformemente distribuiti	2.636.345	14,588	-1,398	2.607.651	14,551	-1,393	
Pesi concentrati in zone	161.196	13,797	-2,246	161.195	13,869	-2,706	
TOTALE PESO PARATOIA pulita	2.797.541	14,543	-1,447	2.768.846	14,511	-1,469	
differenza percentale (modello - calcolo)/calcolo				-1,03%	-0,22%	1,52%	
differenza assoluta (modello - calcolo)				-28.695	-0,032	-0,022	
Peso fouling (distribuito)	435.900	13,143	-0,465	435.500	14,837	-0,550	
TOTALE PESO PARATOIA incrostata	3.233.441	14,354	-1,315	3.204.346	14,555	-1,344	
differenza percentuale (modello - calcolo)/calcolo				-0,90%	1,40%	2,21%	
differenza assoluta (modello - calcolo)				-29.095	0,201	-0,029	

TAB. 5.10 – CONFRONTO PESI CALCOLATI E PESI DA MODELLO – CON CONNETTORI E APPOGGI ELASTICI

5.4. Onda corta

I calcoli sono stati eseguiti considerando l'onda alla barriera con periodo di ritorno 1000 anni (ref. documento MV077P-PE-CCR-7005-C0 della WBE CH.H1.46.PE.02) le cui caratteristiche sono:

Hs = 3,60 m con T = 10,1 secondi

Per la determinazione della sopraelevazione dell'onda, si è considerato non il valore di altezza significativa, ma un'onda con altezza $H_{1/20} = 1.4$ Hs = 5.04 m,

La sopraelevazione della cresta d'onda considerata è pari a 2,52 m.

La pressione dell'acqua a qualsiasi quota dal fondale al passaggio di un'onda è dato dalla somma della pressione idrostatica più la pressione dinamica.

Il valore della pressione dinamica è sempre inferiore al valore generato dalla sopraelevazione dell'onda calcolato staticamente e dipende dalla forma dell'onda stessa e quindi dai rapporti fra profondità d'acqua, altezza e lunghezza d'onda.

A favore di sicurezza si considera un valore di sovrappressione dinamica pari alla sopraelevazione della cresta d'onda.

Tale sovrappressione si trasmette istantaneamente a tutta la massa d'acqua che circonda la paratoia per cui le condizioni di equilibrio globale della paratoia e conseguentemente le reazioni sui vincoli non variano rispetto a quelle in acqua tranquilla.

L'acqua all'interno della paratoia risente anch'essa della sovrappressione d'onda, ma, essendo a contatto con l'acqua esterna solo in corrispondenza delle prese d'acqua sul fasciame posteriore inclinato della paratoia, l'intera massa si porta alla pressione corrispondente al profilo d'onda sulla verticale dell'apertura stessa.

In generale quindi i fasciami laterali della paratoia saranno soggetti ad una pressione dall'esterno all'interno variabile con il profilo dell'onda e dall'interno all'esterno costante e pari a quella della verticale dell'apertura.

Il carico sbilanciato agente su ciascun fasciame è quindi dato dalla differenza fra le sovrappressioni agenti in direzione opposta, mentre a livello globale l'equilibrio della paratoia rimane immutato.

L'onda considerata ha una lunghezza di circa 105 m e quindi la differenza di sopraelevazione dell'onda ai due estremi della paratoia, la cui lunghezza è circa uguale a un terzo della lunghezza d'onda, è al massimo pari all'ampiezza d'onda e quindi 2.52 m.

Ancora con un approccio fortemente conservativo, si è infine considerato che tale dislivello si mantenga costante lungo l'intera paratoia, mentre in realtà l'andamento sarà più simile ad un diagramma triangolare con ugual valore massimo e quindi risultante pari a metà.

Si è inoltre presa in esame la posizione del profilo dell'onda che genera tale pressione dall'esterno all'interno della paratoia e agisce quindi in direzione contraria a quella considerata per le verifiche operative della paratoia in cui la pressione interna dell'aria è superiore alla pressione idrostatica esterna.

Nel calcolo viene conservativamente trascurata la spinta idrostatica, contraria alla forza peso e alla pressione dell'acqua dovuta all'onda.

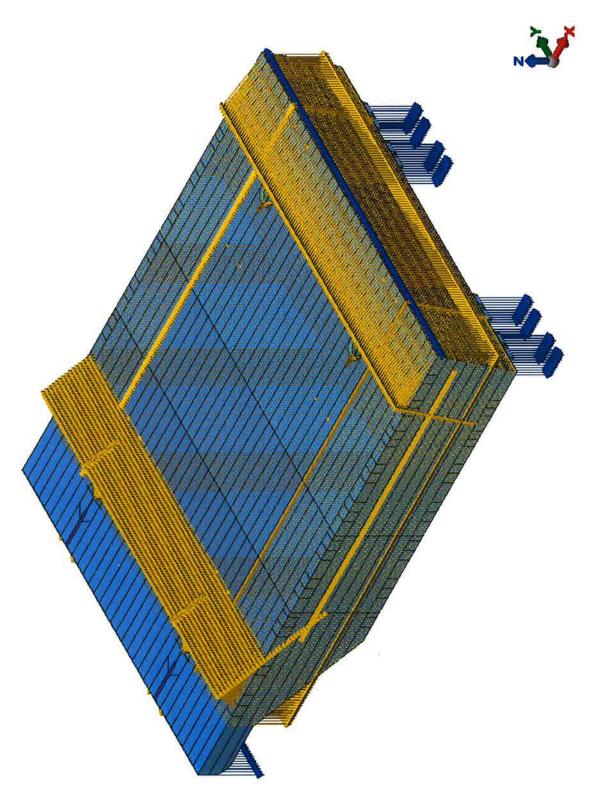
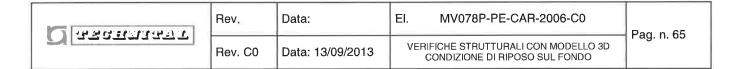



Fig. 5.1 – Pressioni e forze concentrate

5.5. Variazioni termiche

Si sono considerate variazioni termiche uniformi su tutti i componenti di ±15°C, corrispondenti alle variazioni di temperatura stagionali dell'acqua di mare (ref. documento MV078P-PE-CCR-7005-C0 della WBE CH.H1.46.PE.02).

6. COMBINAZIONI DI CARICO

Si considerano le seguenti condizioni di carico:

Descrizione	Vincoli	Cond.	Carichi Agenti
			Peso paratoia allestita
		E.5a	Peso fouling
			Sovrappressione onda corta
			Peso paratoia allestita
			Peso fouling
Paratoia allestita	Cerniere	E.5b	Sovrappressione onda corta
incrostata	+ Appoggi elastici		Variazione termica uniforme su tutti i componenti +15°C
			Peso paratoia allestita
			Peso fouling
		E.5c	Sovrappressione onda corta
			Variazione termica uniforme su tutti i componenti -15°C

TAB. 6.1 - COMBINAZIONI DI CARICO

A ulteriore verifica si sono ricavati i risultati anche in assenza di carico d'onda, per controllare l'equilibrio dei carichi imposti e valutare le deformazioni al netto dell'azione dell'onda.

् कडवरायाक्त <u>ा</u>	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 66
O 350mm3755	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 00

7. RISULTATI

7.1. Verifiche tensionali

Si riportano nelle tabelle seguenti i risultati per le combinazione di carico E.5a: le sollecitazioni sono sempre inferiori alla sollecitazione ammissibile. La paratoia non è soggetta a vincoli che ne impediscano la dilatazione e la contrazione, non si riscontrano pertanto apprezzabili variazioni delle sollecitazioni nelle condizioni E.5b ed E.5c rispetto alla condizione E.5a.

Funzione	posizione/elemento	spessore nominale (mm)	riduzione per corrosione (mm)	materiale	σamm $h = 1,55$ [N/mm ²]	σνοη Mises [N/mm²]	Peggiore soll. [N/mm ²]
Fasciami esterni	superiore	8-10-11	1,5	S275J0	174	100	
	inferiore	8-10-11	1,5	S275J0	174	103	
	laterale	8-10-11	1,5	S275J0	174	86	
	posteriore	8-15	1,5	S275J0	174	44	
	anteriore	11	1,5	S275J0	174	49	
	ossatura 01	8	1,5	S275J0	174	82	
	inferiore sotto pinna	20	1,5	S275J0	168	59	
Fasciami interni (paratie longitudinali)	tipici (15 mm solo per irrigidimenti pinne)	10-11-15	2	S275J0	174	50	
	irrigidimenti pinne	20	2	S275J0	168	45	
	zone recessi twist lock	30	2	S275J2	168	18	
	zone recessi twist lock	60	2	S355K2	203	45	
	pinna	180	2	S355K2	173	14	
Rinforzi ordinari	piatti di paratie longitudinali, diaframma telaio 08	11	2	S275J0	174	25	
	piatti fasciame posteriore	12-15	1,5	S275J0	174	40	
	ferri a bulbo di fasciami esterni	max Hp 300x11	2	S275J0	174	79	-106
Squadre	spigoli	10	2	S275J0	174	66	
Piatti rinforzo fori	paratie longitudinali	11	2	S275J0	174		-59

Tab. 7.1 - Verifiche Tensionali combinazione E.5a - Fasciami

Funzione	posizione/elemento	spessore nominale	riduzione per corrosione	materiale	σamm h = 1,33	σνοη Mises	Peggiore soll.
		(mm)	(mm)		[N/mm ²]	[N/mm ²]	[N/mm ²]
Telai rinforzati	ossatura 02	10 11	2	S275J0	174	120	-85
	ossatura 03	10 12 13	2	S275J0	174	97	-60
	ossatura 04	10 13	2	S275J0	174	90	-53
	ossatura 05	10 13	2	S275J0	174	87	-58
	ossatura 06	11 13	2	S275J0	174	54	-40
	ossatura 07	11 13	2	S275J0	174	50	-34
	ossatura 08	11 13	2	S275J0	174	42	-29
	ossatura 09	11 13	2	S275J0	174	47	-28
	ossatura 10	11 13	2	S275J0	174	51	-44
	diaframma centrale	10-11 11-13	2	S275J0	174	77	-64
		10	1	S275J0	174	45	
Telaio ammortizzatori	ossatura 10	10	1	S275J0	174		-47
annior tizzatori		20	1	S275J0	168	33	

TAB. 7.2 - VERIFICHE TENSIONALI COMBINAZIONE E.5a - TELAI

O asanzana	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 68
O[352H313TT]	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 00

7.2. Reazioni vincolari

Nelle tabelle seguenti vengono riportate le reazioni vincolari.

La reazione lungo x è positiva se rivolta verso il lato mare, la reazione z è positiva se rivolta verso l'alto.

A ulteriore verifica si riportano anche le reazioni senza carico d'onda, che risultano come previsto praticamente invariate.

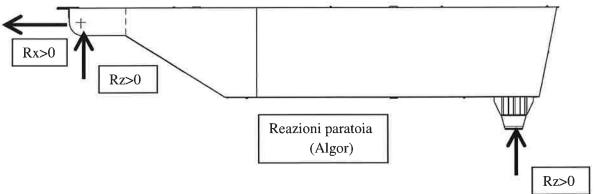
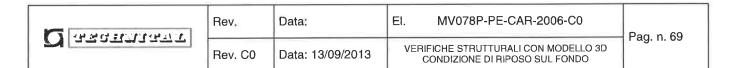



Fig. 7.1 - Convenzioni di segno per le reazioni della paratola

REAZIONI (kN)	Combina	zioni E.5a-	E.5b- E.5c	Reazioni senza carico onda		
REAZIONI (KN)	Rx (kN)	Ry (kN)	Rz (kN)	Rx (kN)	Ry (kN)	Rz (kN)
Cerniera sinistra	0	0	-657	0	0	-639
Cerniera destra	0	0	-657	0	0	-639
Ammortizzatore sinistro laterale	0	0	-486	0	0	-481
Ammortizzatore sinistro centrale	0	0	-488	0	0	-483
Ammortizzatore destro laterale	0	0	-486	0	0	-481
Ammortizzatore destro centrale	0	0	-488	0	0	-483

TAB. 7.3 - REAZIONI VINCOLARI COMBINAZIONI E.5

7.3. Deformazioni

Nelle tabelle seguenti vengono riportati i valori degli spostamenti nelle tre direzioni degli spigoli del fasciame superiore e inferiore riferite alle coordinate locali della paratoia.

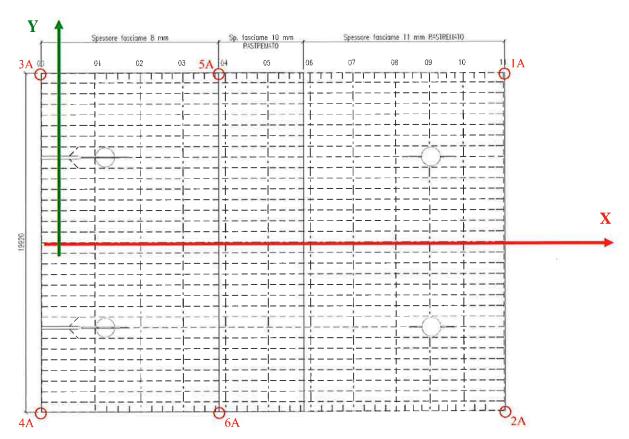


Fig. 7.2 - Posizione punti di rilevo fasciame superiore

O assiminate	Rev.	Data:	El. MV078P-PE-CAR-2006-C0	Pag. n. 70
Q 320HHJTES	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	1 ag. 11. 70

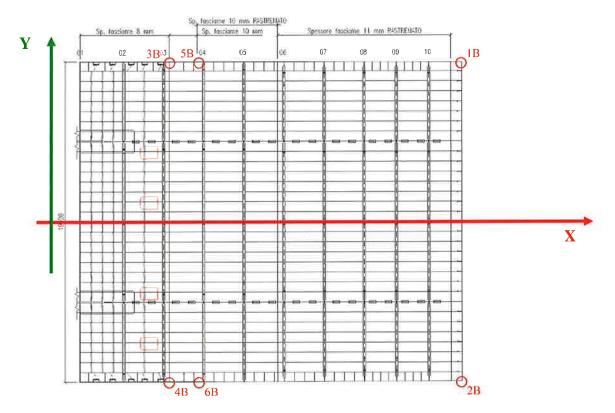
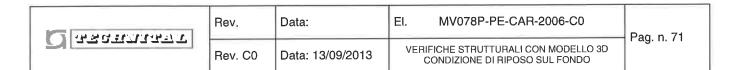



Fig. 7.3 - Posizionamento punti di rilievo fasciame inferiore

Spostamenti dei vertici	Cor	nbinazione	E.5a	Combinazione E.5b			Combinazione E.5c		
(mm)	X	Y	Z	X	Y	Z	X	Y	Z
Estradosso									
- vertice lato laguna 1A	2,397	-0,121	-107,147	7,154	2,569	-105,974	-2,360	-2,811	-108,319
- vertice lato laguna 2A	2,397	-0,085	-107,147	7,154	-0,975	-105,974	-2,360	0,805	-108,319
- vertice lato mare 3A	3,150	-0,182	0,506	3,002	2,508	0,625	3,298	-2,872	0,387
- vertice lato mare 4A	3,150	-0,024	0,506	3,002	-0,914	0,625	3,298	0,866	0,387
- inizio rastremazione 5A	2,923	-0,205	-42,533	4,672	2,485	-42,007	1,174	-2,895	-43,059
- inizio rastremazione 6A	2,923	-0,001	-42,533	4,672	-0,891	-42,007	1,174	0,889	-43,059
Intradosso									
- vertice lato laguna 1B	-16,810	-0,306	-103,319	-12,040	2,384	-103,085	-21,581	-2,997	-103,553
- vertice lato laguna 2B	-16,810	0,101	-103,319	-12,040	-0,790	-103,085	-21,581	0,991	-103,553
- vertice lato mare 3B	-17,128	-0,471	-35,038	-15,517	2,220	-35,483	-18,739	-3,161	-34,593
- vertice lato mare 4B	-17,128	0,265	-35,038	-15,517	-0,625	-35,483	-18,739	1,155	-34,593
- inizio rastremazione 5B	-17,055	-0,356	-42,433	-15,113	2,334	-42,807	-18,997	-3,047	-42,060
- inizio rastremazione 6B	-17,055	0,151	-42,433	-15,113	-0,740	-42,807	-18,997	1,041	-42,060

TAB. 7.4 - SPOSTAMENTI DEI VERTICI DELLA PARATOIA CONDIZIONI A RIPOSO CON ONDA

Si riportano nella successiva tabella gli spostamenti dei vertici senza il carico d'onda.

Spostamenti dei vertici		Senza ond	la
(mm)	X	Y	Z
Estradosso			
- vertice lato laguna 1A	2,707	0,038	-106,136
- vertice lato laguna 2A	2,707	-0,129	-106,136
- vertice lato mare 3A	3,116	-0,136	0,456
- vertice lato mare 4A	3,116	0,045	0,456
Intradosso			
- vertice lato laguna 1B	-16,443	-0,121	-102,323
- vertice lato laguna 2B	-16,443	0,030	-102,323
- vertice lato mare 3B	-16,857	-0,195	-34,411
- vertice lato mare 4B	-16,857	0,105	-34,411

TAB. 7.5 - SPOSTAMENTI DEI VERTICI DELLA PARATOIA CONDIZIONE A RIPOSO SENZA ONDA

7.4. Spostamenti e rotazioni centri snodi

Nelle tabelle successive vengono riportati gli spostamenti e le rotazioni in corrispondenza dei centri degli snodi dei connettori per le condizioni esaminate.

Il sistema di riferimento per gli assi è una terna destrorsa, come rappresentata nella figura seguente.

Lo snodo vincolato alla traslazione in Y è quello destro (su y negativa).

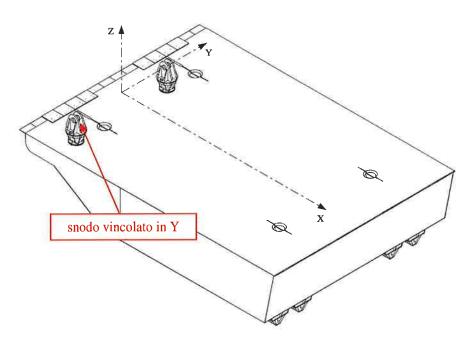


FIG. 7.4 – ASSI DI RIFERIMENTO

ि सहवस्त्रायस्य र	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 73
Olazanarr.	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	rag. II. 73

C. lii.	Spostamenti (mm) centro snode	o destro (Y<0)	Spostamenti (mm) centro snodo sinistro (Y>0)			
Combinazione	X	Y	Z	X	Y	Z	
Combinazione E.5a	0,000	0,000	0,000	0,000	-0,206	0,000	
Combinazione E.5b	0,000	0,000	0,000	0,000	1,594	0,000	
Combinazione E.5c	0,000	0,000	0,000	0,000	-2,006	0,000	
A riposo senza onda	0,000	0,000	0,000	0,000	-0,091	0,000	

 $Tab.\ 7.6-\ Spostamento\ dei\ centri\ degli\ snodi\ dei\ connettori$

Combinazione	Rotazioni (gra	adi) centro snodo attorno a	destro (Y<0)	Rotazioni (gradi) centro snodo sinistro (Y>0) attorno a		
	X	Y	Z	X	Y	Z
Combinazione E.5a	0,00520	0,26291	-0,00143	-0,00520	0,26291	0,00143
Combinazione E.5b	0,00520	0,26069	-0,00143	-0,00520	0,26069	0,00143
Combinazione E.5c	0,00520	0,26513	-0,00143	-0,00520	0,26513	0,00143
A riposo senza onda	0,00166	0,26020	-0,00203	-0,00166	0,26020	0,00203

Tab. 7.7 – Rotazione dei centri degli snodi dei connettori

7.5. Conclusioni

Le condizioni operative analizzate hanno evidenziato che la paratoia è sempre soggetta a sollecitazioni molto inferiori alle tensioni ammissibili.

and some and appropriate to the	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 74
○ <u>स्हत्यत्रतस्</u> र	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	r ag. n. 74

8. IMMAGINI DEI RISULTATI

8.1. Generalità

Di seguito si riportano le immagini significative dei risultati in dettaglio relativi alle tensioni e alle deformazioni per la condizione E.5a.

Le figure per le quali è indicata la dicitura trave riportano la sollecitazione combinata di carico normale e momenti flettenti per i componenti trave dell'elemento.

Condizione E.5a

Fig. 8.1 – Tensione equivalente di Von Mises e deformata – Fasciame superiore	75
Fig. 8.2 - Tensione equivalente di Von Mises - Fasciame inferiore	76
Fig. 8.3 – Tensione equivalente di Von Mises - Irrigidimenti	77
Fig. 8.4 – Taglio z-x	78
Fig. 8.5 – Taglio y-z	79
Fig. 8.6 – Elementi trave	80

The management of a	Rev.	Data:	EI. MV078P-PE-CAR-2006-C0	Pag. n. 75
○ क्रद्रस्यतकर	Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODELLO 3D CONDIZIONE DI RIPOSO SUL FONDO	r ag. 11. 75

8.2. Riposo sul fondo - Combinazione E.5a

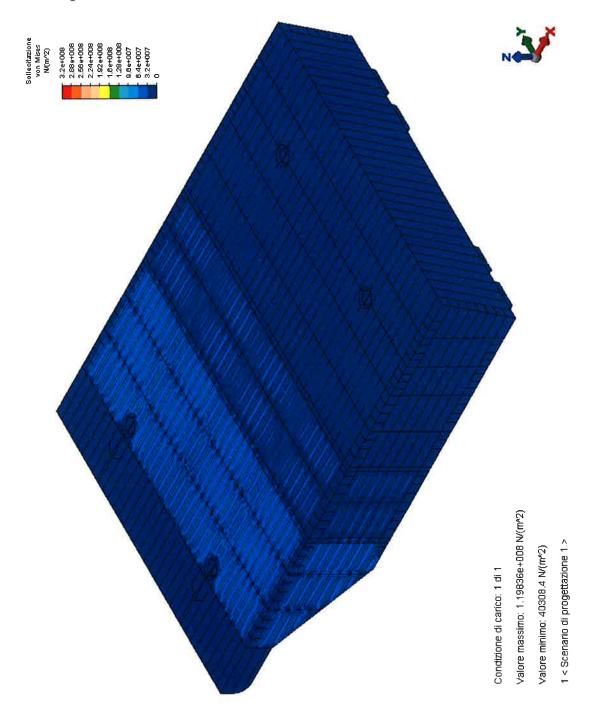
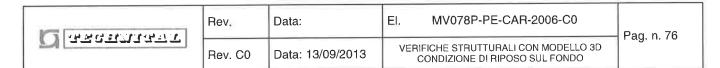
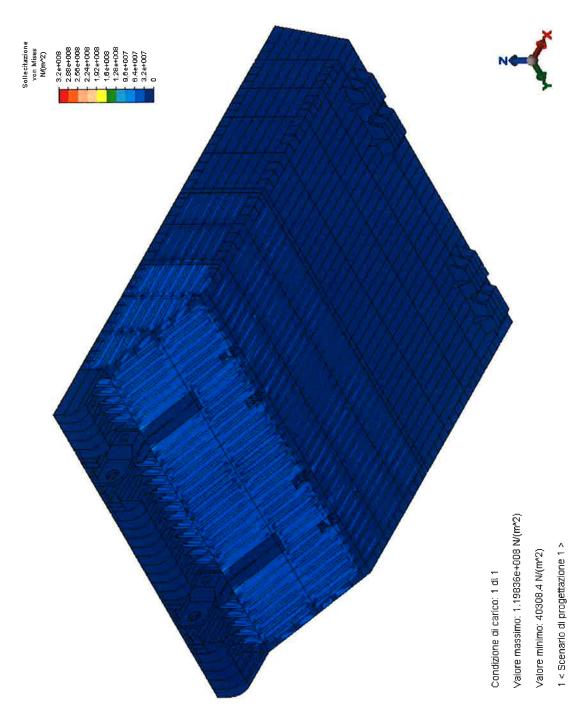





Fig. 8.1 – Tensione equivalente di Von Mises e deformata – Fasciame superiore

 $Fig.\ 8.2-Tensione\ equivalente\ di\ Von\ Mises-Fasciame\ inferiore$

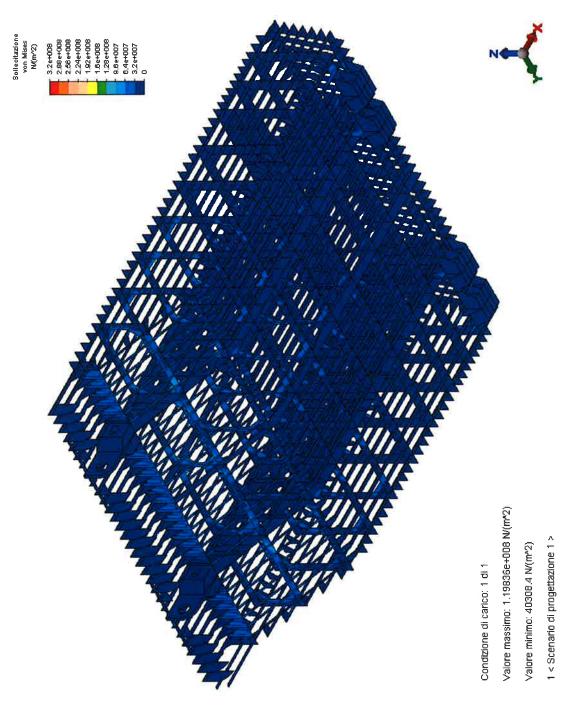


Fig. 8.3 – Tensione equivalente di Von Mises - Irrigidimenti

Rev.	Data:	EI. MV078P-PE-CAR-2006-C	0 Pag. n. 78	
Rev. C0	Data: 13/09/2013	VERIFICHE STRUTTURALI CON MODEI CONDIZIONE DI RIPOSO SUL FONI	LLO 3D	Fag. 11. 70

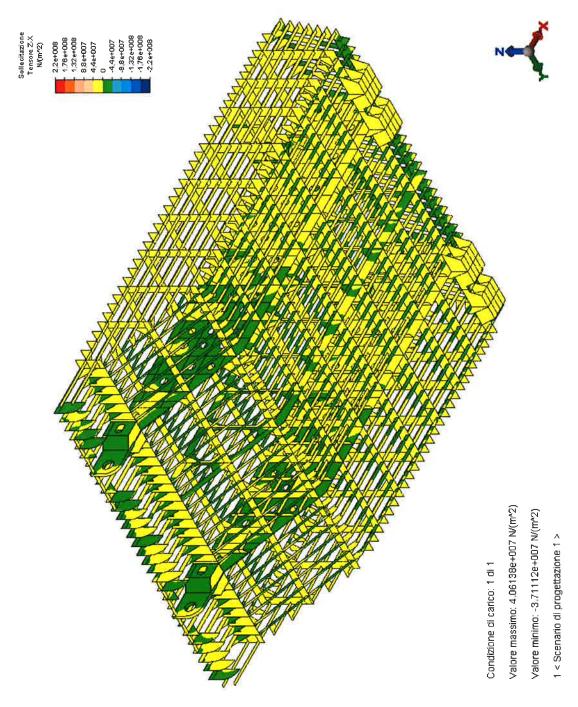


Fig. 8.4 - Taglio z-x

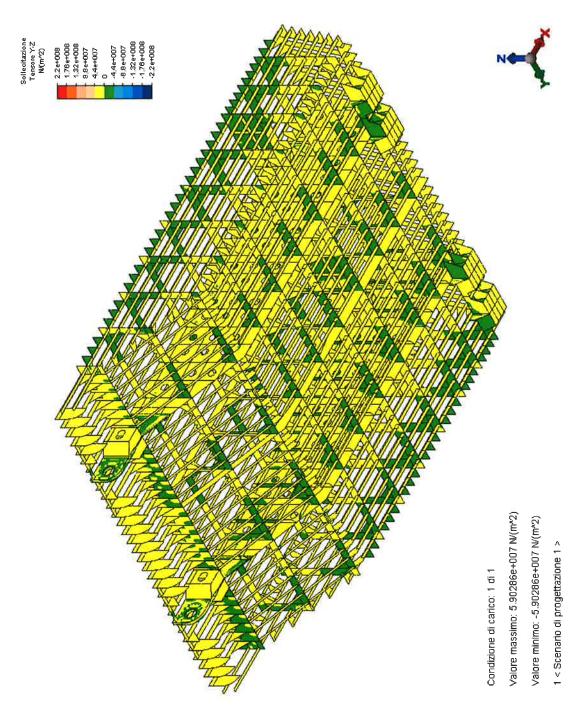


Fig. 8.5 - Taglio y-z

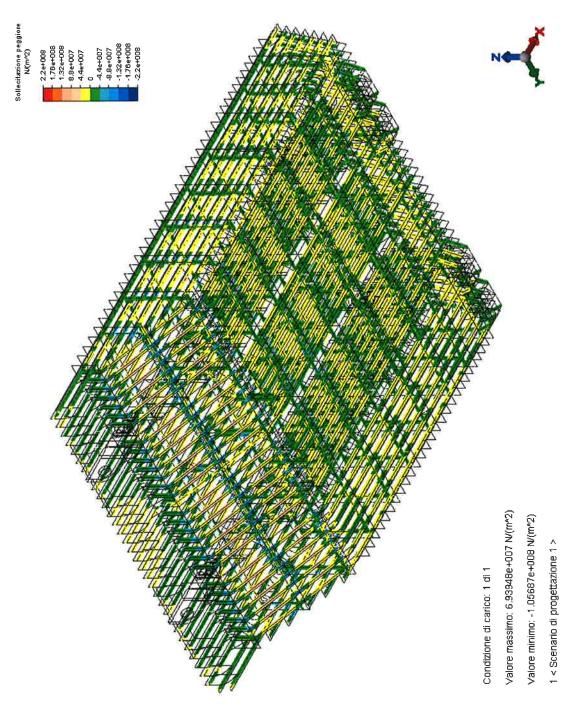


FIG. 8.6 – ELEMENTI TRAVE